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1 Introduction
The main goal of this essay is to prove the Kähler quotient construction (Theorem 6.5), which says that if
a Kähler manifold M is acted on by a compact Lie group G preserving the Kähler structure and there is
a moment map µ : M → g∗ for the action, then for all ξ ∈ g∗ such that the stabilizer Gξ acts freely on
µ−1(ξ), the quotient space µ−1(ξ)/Gξ is also Kähler. We will also prove the Hyperkähler analogue of this
construction.

The essay is organized as follows. In Section 2 and 3 we recall some basic facts from the theory of Lie
groups and principal bundles. In Section 4 we describe the classical symplectic reduction of Marsden and
Weinstein [7]. In Section 5 we introduce the shifting trick which allows to identify the symplectic reduction
at ξ ∈ g∗ with the symplectic reduction at 0 of M × (G · ξ) using a certain canonical symplectic structure
on the coadjoint orbit G · ξ. In Sections 6 and 7, following Hitchin, Karlhede, Lindström and Roček [3], we
discuss how symplectic reduction applies to Kähler and Hyperkähler manifolds, respectively. Finally, we give
in Section 8 an example of Kähler reduction. The emphasis throughout this essay is on providing detailed
proofs of all results.

2 Lie Group Actions and Quotient Manifolds
Let M be a smooth manifold with a smooth left action of a compact Lie group G. Denote the action by

ψ : G×M −→M, (g, p) 7−→ g · p.

We will also often use the notations

ψ(g, p) = ψg(p) = ψp(g) = g · p,

and call
ψp : G −→M, g 7−→ g · p

the orbit map. We denote by Gp the stabilizer of G at p and by G · p the orbit through p. Let g be the Lie
algebra of G, let X(M) be the Lie algebra of vector fields on M and let

ψ̂ : g −→ X(M), X 7−→ X# (2.1)

be the Lie algebra action generated by ψ. That is, for each X ∈ g, X# is the unique vector field on
M whose flow is (t, p) 7→ exp(tX) · p. Recall that ψ̂ is a Lie algebra anti-homomorphism, meaning that
[X,Y ]# = −[X#, Y #]. Also, we will often use that X# can be expressed in terms of the orbit map by

X#
p = (dψp)e(Xe).

Moreover, we recall the following basic fact, whose proof can be found, for example, in [5] Theorem 21.10.
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Theorem 2.1. Let G be a Lie group acting smoothly, freely and properly on a smooth manifold M . Then,
the quotient space M/G is a manifold and has a unique smooth structure such that the natural projection
π : M →M/G is a smooth submersion. Moreover, π : M →M/G has the structure of a principal G-bundle.

In our case, we do not assume that the action of G on M is free so this does not apply directly. Never-
theless, we can still use the theorem to construct a smooth manifold structure on the set G/Gp of left cosets.
Then, we show that the orbits G · p are smooth submanifolds of M diffeomorphic to G/Gp.

Proposition 2.2. The stabilizer Gp of a point p ∈ M is a closed Lie subgroup of G. Moreover, the right
action of Gp on G by right multiplication gives a compact smooth manifold G/Gp.

Proof. We have Gp = (ψp)−1(p), so Gp is a closed subgroup of G and hence an embedded Lie subgroup
of G (by the “closed subgroup theorem”). Now, Gp acts smoothly and freely on G by right multiplication.
Moreover, Gp is closed in G so it is compact and hence the action is proper. Therefore, the orbit space G/Gp
is a smooth manifold which is compact since G/Gp = π(G) and G is compact.

Proposition 2.3. Let G be a compact Lie group acting smoothly on a smooth manifold M . Then, the orbit
G · p through a point p ∈M is a properly embedded submanifold of M diffeomorphic to G/Gp. Moreover, the
restriction of the orbit map to G · p,

ψp : G −→ G · p, g 7−→ g · p,

is a surjective smooth submersion and its derivative at e induces a surjective linear map

g −→ Tp(G · p), X 7−→ X#
p ,

whose kernel is gp := Lie(Gp). Thus, it is a linear isomorphism if Gp = {e}, and in general we have

Tp(G · p) ∼= g/gp.

Proof. Since G/Gp is the quotient of G by right multiplication of elements of Gp, the following left action
of G on G/Gp is well-defined,

ϕ : G×G/Gp −→ G/Gp, g · [h] = [gh].

Moreover, it is transitive since left multiplication by G on itself is transitive. To show that it is smooth, note
that the following diagram commutes:

G×G G

G×G/Gp G/Gp

m

Id×π π

ϕ

(g, h) gh

(g, [h]) [gh]

The upper right corner is smooth and Id× π is a smooth submersion, so ϕ is smooth.
Now, the orbit map ψp : G → M is constant on the fibres of π : G → G/Gp since if g ∈ G and a ∈ Gp

then ψp(ga) = g · a · p = g · p = ψp(g). But π is a smooth submersion, so ψp descends to a smooth map

Ψp : G/Gp −→M, [h] 7−→ h · p.

It is injective since if h1 · p = h2 · p then h−1
2 h1 ∈ Gp and hence [h1] = [h2] ∈ G/Gp. Moreover, the image

of Ψp is the orbit G · p. Now, Ψp is equivariant with respect to the transitive action of G on G/Gp and the
original action of G on M , so it has constant rank. Since it is injective, it is a smooth immersion. Moreover,
G/Gp is compact so Ψp is a smooth embedding and a proper map. Therefore, Ψp(G/Gp) = G ·p is a properly
embedded submanifold of M diffeomorphic to G/Gp.

Now, the orbit map can be rewritten as

ψp : G
π−→ G/Gp

Ψp−→ G · p.
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This is the composition of a smooth submersion with a diffeomorphism, so it is a smooth submersion. Hence,

(dψp)e : g ∼= TeG −→ Tp(G · p), X 7−→ X#
p

is a surjective linear map. Now, we have Gp = (ψp)−1(p) and ψp is a smooth submersion, so ker(dψp)e =
TeGp ∼= gp.

Proposition 2.4. We have
Tp(G · p) = ker dπp

and
Tπ(p)(M/G) ∼= TpM/Tp(G · p)

for all p ∈M .

Proof. The map π : M →M/G is a smooth submersion, so

dπp : TpM −→ Tπ(p)(M/G)

is a surjective linear map. Moreover, G ·p is the submanifold defined by the level set π−1(π(p)) so Tp(G ·p) =
ker dπp. Hence, dπp factors as an isomorphism TpM/Tp(G · p) −→ Tπ(p)(M/G).

3 Principal Bundles and Connections
In this section we recall a few basic facts from the theory of connections on principal bundles. Our main
reference for this material is [4].

Let G be a Lie group and
π : M −→M/G

a principal G-bundle. Let V ⊆ TM be the vertical bundle, i.e. Vp = ker dπp for all p ∈ M . Then, V is
a G-invariant subbundle of TM and a Ehresmann connection on M is a choice of another G-invariant
subbundle H of TM such that TM = V ⊕H. We call H the horizontal bundle.

One of the important properties of the horizontal bundle is that dπ : TM → T (M/G) restricts to
isomorphisms

dπp : Hp
∼−→ Tπ(p)(M/G).

This allows us to identify smooth vector fields on M/G with G-invariant sections of H. This correspondence
will be very important in the following sections, so we state it more precisely in the following proposition
(which also introduces some notation and terminology). This is all standard material and can be found for
example in [4] Chapter II.

Proposition 3.1 (Horizontal Lift). Let π : M →M/G be a principal bundle with a Ehresmann connection
TM = V ⊕ H. Every vector field X ∈ X(M/G) has a unique horizontal lift X∗. That is, there exists a
unique smooth G-invariant vector field X∗ ∈ X(M) such that

(a) X∗p ∈ Hp, and

(b) dπp(X∗p ) = Xπ(p),

for all p ∈M .
Conversely, given a smooth G-invariant section Y of H there is a unique vector field X ∈ X(M/G) such

that X∗ = Y . We denote this vector field by π∗(Y ).
Thus we have a bijection

X(M/G)←→ Γ(M,H)G

X 7−→ X∗

π∗(Y )←− [ Y.
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Moreover, this bijection is C∞-linear, in the sense that

(fX)∗ = (f ◦ π)X∗, (X + Y )∗ = X∗ + Y ∗

and
π∗((f ◦ π)Y ) = fπ∗(Y ), π∗(X + Y ) = π∗(X) + π∗(Y )

for all f ∈ C∞(M/G) and smooth vector fields X,Y on M/G.

Proposition 3.2. Let ω be G-invariant covariant k-tensor onM . Then, there is a unique covariant k-tensor
η on M/G such that

η(X1, . . . , Xk) ◦ π = ω(X∗1 , . . . , X
∗
k),

for all smooth vector fields X1, . . . , Xk on M/G.

Proof. For simplicity of notation, we assume that ω is a 1-form. Let X be a smooth vector field on M/G.
By the G-invariance of ω the map ω(X∗) : M → R is constant on the fibres of π. Indeed, if π(p) = π(q) then
q = g · p for some g ∈ G and since X∗ is also G-invariant we get

ωq(X
∗
q ) = ωq((dψg)p(X

∗
p )) = (ψ∗gω)p(X

∗
p ) = ωp(X

∗
p ).

Since π is a surjective smooth submersion, there is thus a unique smooth map η(X) such that the following
diagram commutes

M

M/G R.

π
ω(X∗)

η(X)

Moreover, the C∞-linearity property of horizontal lifts shows that this defines a covariant tensor field η.

Now, in the case where M has a G-invariant Riemannian metric g, there is a particular choice of connec-
tion, called the orthogonal connection, defined by taking H to be the orthogonal complement of V . The
next result tells us that M/G inherits a metric whose Levi-Civita connection is easily computed in terms of
the orthogonal projection TM → H.

Theorem 3.3 (Metric on Quotient Manifolds). Let π : M → M/G be a principal G-bundle and g a
G-invariant Riemannian metric on M . There exists a unique Riemannian metric ḡ on M/G such that
ḡ(X,Y ) ◦ π = g(X∗, Y ∗). Moreover, the Levi-Civita connection ∇̄ of ḡ on M/G is given by

∇̄XY = π∗(PH(∇X∗Y ∗)), (3.1)

where PH : V ⊕ H → H is the orthogonal projection and π∗ is the push-forward of G-invariant horizontal
sections given by Proposition 3.1.

The metric ḡ is called the quotient metric induced by g.

Proof. By Proposition 3.2, the G-invariance of g implies that there exists a unique covariant 2-tensor ḡ on
M/G such that ḡ(X,Y ) ◦ π = g(X∗, Y ∗). It is clearly symmetric and positive definite and so a Riemannian
metric.

Now, we show that (3.1) is a well-defined linear connection that is torsion free and compatible with ḡ.
First, PH(∇X∗Y ∗) is G-invariant since X∗, Y ∗ are G-invariant, ∇ is compatible with the G-invariant metric
g and H is G-invariant. Thus, its push-forward to M/G is well-defined by Proposition 3.1. Moreover, by
the C∞ linear property of horizontal lifts (Proposition 3.1), it is easy to see that ∇̄ is a linear connection.
Thus, it remains to show that ∇̄ is torsion free and compatible with ḡ.
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To show that ∇̄ is compatible with ḡ, let X,Y, Z be smooth vector fields on M/G. We have

Zπ(p)(ḡ(X,Y )) = d(ḡ(X,Y ))π(p)(Zπ(p)) = d(ḡ(X,Y ))π(p)(dπp(Z
∗
p ))

= d(g(X∗, Y ∗))p(Z
∗
p ) = Z∗p (g(X∗, Y ∗)),

and hence

Z(ḡ(X,Y )) ◦ π = Z∗(g(X∗, Y ∗)) = g(∇Z∗X∗, Y ∗) + g(X∗,∇Z∗Y ∗).

Now, since X∗ and Y ∗ are horizontal we have

Z(ḡ(X,Y )) ◦ π = g(PH(∇Z∗X∗), Y ∗) + g(X∗, PH(∇Z∗Y ∗))

= ḡ(π∗(PH(∇Z∗X∗)), Y ) ◦ π + ḡ(X,π∗(PH(∇Z∗Y ∗))) ◦ π
= (ḡ(∇̄ZX,Y ) + ḡ(X, ∇̄ZY )) ◦ π.

Thus, Z(ḡ(X,Y )) = ḡ(∇̄ZX,Y ) + ḡ(X, ∇̄ZY ) so ∇̄ is compatible with ḡ.
Now to prove that ∇̄ is torsion free, recall that the horizontal component of [X∗, Y ∗] is [X,Y ]∗ ([4],

Proposition II.1.3). Thus,

∇̄XY − ∇̄YX = π∗(PH(∇X∗Y ∗ −∇Y ∗X∗)) = π∗(PH([X∗, Y ∗]))

= π∗([X,Y ]∗) = [X,Y ].

The following standard fact will also be used later.

Theorem 3.4 (Metric on Submanifolds). Let (M, g) be a Riemannian manifold and M̃ ⊆ M an embedded
submanifold with the induced Riemannian metric g̃ = i∗g. Then, the Levi-Civita connection ∇̃ of (M̃, g̃) is
given by

∇̃XY = (∇XY )>,

where the vector fields on the right are extensions of X,Y ∈ X(M̃) to a neighborhood of M̃ , and > is the
orthogonal projection onto TM̃ .

Proof. This is also known as Gauss Formula. See [6], Theorem 8.3.

4 Hamiltonian Spaces and Symplectic Reduction
Let (M,ω) be a symplectic manifold and G a compact Lie group acting smoothly on M by symplectomor-
phisms.

We showed in Theorem 3.3 that whenM is a Riemannian manifold and G acts isometrically, the quotient
spaceM/G inherits a natural Riemannian structure. Symplectic reduction is the symplectic analogue of this
phenomenon. However, here the situation is more subtle and we have to add extra assumptions. For one
thing, M/G does not always have the right dimension to be symplectic. However, if we take a G-invariant
submanifold S of codimension dimG in M , then dimS/G = dimM − 2 dimG is even, so has the potential
to be symplectic. One way to obtain such a submanifold, is by using a moment map for the action, i.e. a
smooth map µ : G→ g∗ with the following properties.

(1) µ is equivariant:
µ(g · p) = Ad∗gµ(p), for all p ∈M and g ∈ G,

where Ad∗ is the coadjoint representation of G on g∗.
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(2) For each X ∈ g define the function

µX : M −→ R, µX(p) = 〈µ(p), X〉.

Then, µX is a Hamiltonian function for X#, i.e. dµX = iX#ω.

It can be shown [2] that if G is semisimple, a moment map necessarily exists. When a Lie group G acts
on a symplectic manifold (M,ω) by symplectomorphism and has a moment map µ, we call (M,ω,G, µ) a
Hamiltonian space.

In particular, the equivariance of µ shows that for any ξ ∈ g∗, the stabilizer Gξ preserves the level set
µ−1(ξ). Hence, it makes sense to consider the quotient µ−1(ξ)/Gξ, and we wish to show that this space
inherits a natural symplectic structure from the one on M .

First of all, by Proposition 2.3, Gξ is a compact Lie subgroup of G and acts smoothly on M . To show
that µ−1(ξ)/Gξ is a smooth manifold, we want to use Theorem 2.1, so we want µ−1(ξ) to be an embedded
submanifold of M and Gξ to act freely on µ−1(ξ). But remarkably, the condition that Gξ acts freely on
µ−1(ξ) automatically implies that ξ is a regular value of µ. In fact, we will show the following.

Lemma 4.1 (Conditions for Symplectic Reduction). The following are equivalent:

(1) Gξ acts freely on µ−1(ξ).

(2) Gp = {e} for all p ∈ µ−1(ξ).

Moreover, if these hold, then ξ is a regular value of µ and µ−1(ξ)/Gξ is a smooth manifold.

Here (1) is just an algebraic condition which does not assume any topological or differential structure on
µ−1(ξ). As we will see at the end of this section, this condition is also sufficient to ensure the existence of a
symplectic form on µ−1(ξ)/Gξ.

The proof that (1) and (2) are equivalent will be a consequence of the following simple observation.

Proposition 4.2. If p ∈ µ−1(ξ), then

(Gξ)p = Gξ ∩Gp = Gp.

Proof. We have,
(Gξ)p = {g ∈ G : Ad∗gξ = ξ and g · p = p} = Gξ ∩Gp ⊆ Gp.

For the other inclusion, let g ∈ Gp. Then, by equivariance

Ad∗gξ = Ad∗gµ(p) = µ(g · p) = µ(p) = ξ,

so g ∈ Gp ∩Gξ.

To prove the rest of Lemma 4.1, the key element will be the following result which expresses im dµp in
terms of the Lie algebra of Gp.

Proposition 4.3. For all p ∈M we have

ker dµp = (Tp(G · p))ωp

im dµp = g0
p,

where (Tp(G · p))ωp is the symplectic complement of Tp(G · p) in TpM and g0
p ⊆ g∗ is the annihilator of

gp := Lie(Gp) ⊆ g
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Proof. First note that G ·p is a properly embedded submanifold of M by Proposition 2.3. By viewing X ∈ g
as a linear map g∗ → R and using that the derivative of a linear map is the map itself, we get

ωp(X
#
p , v) = dµXp (v) = d(X ◦ µ)p(v) = X(dµp(v)) = 〈dµp(v), X〉.

Moreover, Tp(G · p) = {X#
p : X ∈ g} by Proposition 2.3, so we have

ker dµp = {v ∈ TpM : 〈dµp(v), X〉 = 0,∀X ∈ g}
= {v ∈ TpM : ωp(X

#
p , v) = 0,∀X ∈ g}

= {v ∈ TpM : ωp(w, v) = 0,∀w ∈ Tp(G · p)}
= (Tp(G · p))ωp .

Now, let v ∈ TpM be is arbitrary. By Proposition 2.3, the kernel of the map X 7→ X#
p is gp, so for all X ∈ gp

we have
〈dµp(v), X〉 = ωp(X

#
p , v) = ωp(0, v) = 0.

Hence im dµp ⊆ g0
p. Moreover, we have

dim im dµp = dimTpM − dim ker dµp = dimTpM − dim(Tp(G · p))ωp

= dimTp(G · p) = dim g/gp = dim g0
p,

so im dµp = g0
p.

Proof of Lemma 4.1 (Conditions for Symplectic Reduction). By definition, Gξ acts freely on µ−1(ξ) if and
only if (Gξ)p = {e} for all p ∈ µ−1(ξ). But (Gξ)p = Gp for p ∈ µ−1(ξ) so this is equivalent to (2).

Now, suppose that (1) and (2) hold. Then, gp = 0 for all p ∈ µ−1(ξ), so by Proposition 4.3, im dµp =
g0
p = g∗ for all p ∈ µ−1(ξ). Hence, ξ is a regular value of µ, so µ−1(ξ) is a properly embedded submanifold

of M and the action of Gξ on M restricts to a smooth action on µ−1(ξ). Since the action is free and Gξ is
compact, the quotient µ−1(ξ)/Gξ is a smooth manifold by Theorem 2.1.

The next result is the fundamental observation that will enable us to show that the quotient space
µ−1(ξ)/Gξ admits a symplectic form.

Proposition 4.4. Suppose that ξ ∈ g∗ is such that Gp = {e} for all p ∈ µ−1(ξ).

(a) The level set µ−1(ξ) is a properly embedded submanifold of M and

Tpµ
−1(ξ) = (Tp(G · p))ωp .

(b) For each p ∈ µ−1(ξ), the orbit Gξ · p is a properly embedded submanifold of µ−1(ξ) and

Tp(Gξ · p) = (Tpµ
−1(ξ))ωp ∩ Tpµ−1(ξ). (4.1)

Proof. (a) By Lemma 4.1, ξ is a regular value of µ, so µ−1(ξ) is a properly embedded submanifold of M .
Moreover, by Proposition 4.3 we get

Tpµ
−1(ξ) = ker dµp = (Tp(G · p))ωp .

(b) Let p ∈ µ−1(ξ). We have Gξ · p ⊆ µ−1(ξ) since if g ∈ Gξ then µ(g · p) = Ad∗gµ(p) = Ad∗gξ = ξ. Now,
Gξ · p is a properly embedded submanifold of M by Proposition 2.3. Since Gξ · p ⊆ µ−1(ξ) and µ−1(ξ) is an
embedded submanifold of M , we get that Gξ · p is a properly embedded submanifold of µ−1(ξ).

In particular, Tp(Gξ · p) ⊆ Tpµ−1(ξ). Now, by (a), we also have Tp(Gξ · p) ⊆ Tp(G · p) = (Tpµ
−1(ξ))ωp , so

Tp(Gξ · p) ⊆ (Tpµ
−1(ξ))ωp ∩ Tpµ−1(ξ).
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To show the other inclusion, let

v ∈ (Tpµ
−1(ξ))ωp ∩ Tpµ−1(ξ) = Tp(G · p) ∩ ker dµp.

Since v ∈ Tp(G · p) we have v = X#
p = (dψp)e(X) for some X ∈ g by Proposition 2.3. Let Âd∗(X) be the

vector field on g∗ generated by X (in the notation of Equation (2.1) in Section 2). We have

(Ad∗)ξ(g) := Ad∗gξ = Ad∗gµ(p) = µ(ψg(p)) = (µ ◦ ψp)(g), for all g ∈ G,

so
Âd∗(X)ξ = d((Ad∗)ξ)e(X) = d(µ ◦ ψp)e(X) = dµp(X

#
p ) = dµp(v) = 0.

Thus, X ∈ gξ = Lie(Gξ) by Proposition 2.3. But then X#
p ∈ Tp(Gξ ·p), so v = X#

p ∈ Tp(Gξ ·p). This proves
Equation (4.1).

Here is how I think about the previous result. We can always restrict the symplectic form ω to a 2-form
i∗ω on µ−1(ξ). However, this 2-form will have some degeneracies. In fact, if we have a non-degenerate 2-form
Ω on a vector space V and restrict it to a subspace W , then the new form has kernel WΩ ∩W and descends
to a non-degenerate form on W/(WΩ ∩W ). But then Equation (4.1) tells us that the degeneracy of i∗ω
occurs precisely in the direction of the Gξ orbits! Thus, when we quotient the manifold by Gξ we eliminate
all degeneracies and get a genuine symplectic form. So most of the work is already done, it just remains to
make that last argument a bit more precise.

Theorem 4.5 (Symplectic Reduction). Let (M,ω,G, µ) be a Hamiltonian space with G compact. Suppose
that ξ ∈ g∗ is such that Gp = {e} for all p ∈ µ−1(ξ). Then, the orbit space µ−1(ξ)/Gξ is a smooth manifold
and there is a unique symplectic form ωξ on µ−1(ξ)/Gξ such that π∗ωξ = i∗ω where π : µ−1(ξ)→ µ−1(ξ)/Gξ
and i : µ−1(ξ) ↪→M are the natural maps. This symplectic space is denoted M//ξ Gξ.

Proof. By Lemma 4.1, µ−1(ξ) is a smooth manifold on which the compact Lie group Gξ acts smoothly and
freely, giving a smooth manifold µ−1(ξ)/Gξ such that π : µ−1(ξ)→ µ−1(ξ)/Gξ is a principal Gξ-bundle.

Now, the 2-form i∗ω on µ−1(ξ) is Gξ-invariant since if

ψ̃ : Gξ × µ−1(ξ) −→ µ−1(ξ)

denotes the action of Gξ on µ−1(ξ), then i ◦ ψ̃g = ψg ◦ i for all g ∈ Gξ, so

ψ̃∗g(i∗ω) = (i ◦ ψ̃g)∗ω = (ψg ◦ i)∗ω = i∗ψ∗gω = i∗ω.

Thus, there is a unique 2-form ωξ on µ−1(ξ)/Gξ such that π∗ωξ = i∗ω. It is closed since π∗dωξ = d(π∗ωξ) =
d(i∗ω) = i∗dω = 0 and dπ is surjective. It remains to show that ωξ is non-degenerate. Let p ∈ µ−1(ξ)
and x = π(p) ∈ µ−1(ξ)/Gξ. Suppose that v ∈ Tx(µ−1(ξ)/Gξ) is such that (ωξ)x(v, w) = 0 for all w ∈
Tx(µ−1(ξ)/Gξ). Since the map

dπp : Tpµ
−1(ξ) −→ Tx(µ−1(ξ)/Gξ)

is surjective, we have v = dπp(v̂) for some v̂ ∈ Tpµ−1(ξ). Hence,

(i∗ω)p(v̂, ŵ) = (π∗ωξ)p(v̂, ŵ) = (ωξ)x(dπp(v̂), dπp(ŵ)) = 0

for all ŵ ∈ Tpµ−1(ξ). Then, by Proposition 4.4,

v̂ ∈ (Tpµ
−1(ξ))ωp ∩ Tpµ−1(ξ) = Tp(Gξ · p) = ker dπp.

Hence, v = dπp(v̂) = 0 so ωξ is non-degenerate.
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5 The Shifting Trick
In the context of the preceding section, we call an element ξ ∈ g∗ central if Gξ = G, i.e. Ad∗gξ = ξ for all
g ∈ G. In the next section, we will show that if ξ is central and the symplectic manifold (M,ω) possesses a
G-invariant Kähler metric that is compatible with ω, then the quotient metric on M//ξ G is also Kähler and
compatible with the reduced form ωξ.

But there is a way to bypass the assumption that ξ is central by using what is called the “shifting trick”.
This allows us to identify M//ξGξ with the symplectic reduction at 0 of M × (G · ξ) using a certain canonical
symplectic structure on the coadjoint orbit G · ξ. The purpose of this section is to explain this shifting
procedure.

Let O be a coadjoint orbit in g∗. Denote by

Âd : g −→ X(g), and Âd∗ : g −→ X(g∗)

the left g-actions generated by Ad and Ad∗, respectively (see Section 2, Equation (2.1)). It is a standard
fact that Âd(X)Y = [X,Y ] and 〈Âd∗(X)ξ, Y 〉 = 〈ξ, [Y,X]〉 for all X,Y ∈ g and ξ ∈ g∗.

Proposition 5.1. For ξ ∈ O, define a skew-symmetric bilinear form βξ on g by

βξ(X,Y ) = 〈ξ, [X,Y ]〉.

Then, gβξ = gξ where gξ := Lie(Gξ).

Proof. Since 〈Âd∗(X)ξ, Y 〉 = 〈ξ, [Y,X]〉 = −βξ(X,Y ), we have

gβξ = {X ∈ g : 〈Âd∗(X)ξ, Y 〉 = 0,∀Y ∈ g} = {X ∈ g : Âd∗(X)ξ = 0} = gξ,

by Proposition 2.2.

Since G is a compact Lie group acting smoothly on g∗, Proposition 2.3 tells us that the orbit O is a
properly embedded submanifold of g∗ with TξO ∼= g/gξ = g/gβξ . Thus, each bilinear form βξ descends to a
non-degenerate 2-form on TξO and it is easy to show that this defines a smooth G-invariant non-degenerate
2-form β on O. Moreover, it is closed:

Proposition 5.2. dβ = 0.

Proof. This is basically a consequence of the Jacobi identity. To simplify the notation, we let X# = Âd∗(X)
be the vector field on g∗ generated by X ∈ g. Recall that

dβ(X,Y, Z) = X(β(Y,Z))− Y (β(X,Z)) + Z(β(X,Y ))

− β([X,Y ], Z) + β([X,Z], Y )− β([Y,Z], X).
(5.1)

By Proposition 2.3 the tangent space TξO is generated by the vectors X#
ξ for X ∈ g, so it suffices to compute

dβξ(X
#
ξ , Y

#
ξ , Z

#
ξ ) for X,Y, Z ∈ g using the above formula. First, note that by the definition of β,

β(X#, Y #)ξ = βξ(X,Y ) = 〈ξ, [X,Y ]〉,

so
β([X#, Y #], Z#)ξ = β(−[X,Y ]#, Z#)ξ = −〈ξ, [[X,Y ], Z]〉.

Moreover, the function
β(Y #, Z#) : g∗ −→ R, ξ 7−→ βξ(Y,Z) = 〈ξ, [Y,Z]〉

is a linear map, so

X#
ξ (β(Y #, Z#)) = 〈X#

ξ , [Y,Z]〉 = 〈ξ, [[Y, Z], X]〉.

9



Therefore, by Equation (5.1), we get

dβξ(X
#
ξ , Y

#
ξ , Z

#
ξ ) = 〈ξ, [[Y, Z], X]− [[X,Z], Y ] + [[X,Y ], Z]〉

+ 〈ξ, [[X,Y ], Z]− [[X,Z], Y ] + [[Y,Z], X]〉
= −2〈ξ, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]〉
= 0

by the Jacobi identity.

Putting all this together, we get the following result.

Theorem 5.3. Let G be a compact Lie group. Each coadjoint orbit O ⊆ g∗ is a properly embedded subman-
ifold of g∗ and has a canonical G-invariant symplectic form βO.

The 2-form βO is sometimes called the Kostant-Kirillov symplectic form. Now, we need a moment
map for the action of G on (O, βO). It turns out that the moment map is the simplest one possible:

Proposition 5.4. The coadjoint action of G on (O, βO) is Hamiltonian with moment map the inclusion
µO : O ↪→ g∗.

Proof. We first show that dµXO = iX#β for all X ∈ g. Note that

µXO : O ⊆ g∗ −→ R, µXO = X ◦ µO

for X ∈ g, where we view X as a linear map g∗ → R. Thus, for all η ∈ O, we have

(dµXO )η : TηO ⊆ g∗ −→ R,

is given by
(dµXO )η(w) = d(X ◦ µO)η(w) = X ◦ (dµO)η(w) = 〈w,X〉.

But # : g→ TηO is surjective, so it suffices to compute (dµXO )η at Y #
η for some Y ∈ g. We have

(dµXO )η(Y #
η ) = 〈Y #

η , X〉 = 〈η, [X,Y ]〉 = βη(X,Y ) = β(X#
η , Y

#
η ).

Thus, dµXO = iX#β. Equivariance is trivial since µ is the inclusion.

Recall that a product M1 ×M2 of two symplectic manifolds (Mi, ωi) is naturally a symplectic manifold
with symplectic form ω = π∗1ω1 + π∗2ω2, where πi are the natural projections. Moreover, it is easy to show
that if G is a Lie group acting on each Mi in a Hamiltonian way with moment maps µi : Mi → g∗, then the
diagonal action of G on M1 ×M2 is Hamiltonian with moment map µ1 ◦ π1 + µ2 ◦ π2.

Now, we return to our original problem: We have a Hamiltonian space (M,ω,G, µ) with G compact. Let
O be a coadjoint orbit in g∗. Then, by equipping O with the negative of its the Kostant-Kirillov form, we
get a symplectic manifold M ×O on which G acts in a Hamiltonian way with moment map

µO : M ×O −→ g∗, (q, η) 7−→ µ(q)− η.

Thus it makes sense to consider the symplectic reduction of M × O at 0. In fact, we will show that
(M ×O)//0G can be identified with M//ξ Gξ for any ξ ∈ O. First, the next result tells us that the conditions
of Theorem 4.5 (Symplectic Reduction) are satisfied for M × O at 0 if and only if they are satisfied for M
at some ξ ∈ O.

Lemma 5.5. Let ξ ∈ O. Then, Gp = {e} for all p ∈ µ−1(ξ) if and only if G(p,η) = {e} for all (p, η) ∈ µ−1
O (0).
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Proof. Suppose first that G(p,η) = {e} for all (p, η) ∈ µ−1
O (0). Let p ∈ µ−1(ξ) and g ∈ Gp. Then,

Ad∗gξ = Ad∗gµ(p) = µ(g · p) = µ(p) = ξ,

so g · (p, ξ) = (g · p,Ad∗gξ) = (p, ξ), and hence, g ∈ G(p,η) = {e}.
Conversely, suppose that Gp = {e} for all p ∈ µ−1(ξ). Let (p, η) ∈ µ−1

O (0) and g ∈ G(p,η). Then,
η = µ(p) = Ad∗hξ for some h ∈ G, and

g · (p, η) = (g · p,Ad∗gη) = (p, η).

Hence,
h−1gh · (h−1 · p) = h−1 · p,

so
h−1gh ∈ Gh−1·p.

But h−1 · p ∈ µ−1(ξ) since
µ(h−1 · p) = Ad∗h−1µ(p) = Ad∗h−1η = ξ.

Thus we get that h−1gh = e and hence g = e.

We are now ready to prove that under these conditions, (M ×O)//0G andM//ξGξ are symplectomorphic.

Theorem 5.6 (The Shifting Trick). Let (M,ω,G, µ) be a Hamiltonian space with G compact. Let ξ ∈ g∗

and let O be the coadjoint orbit through ξ. Then, O has a canonical symplectic form for which the diagonal
action of G on M × O is Hamiltonian with moment map µO(q, η) = µ(q) − η. Moreover, Gp = {e} for all
p ∈ µ−1(ξ) if and only if G(q,η) = {e} for all (q, η) ∈ µ−1

O (0), and in that case, M//ξ Gξ and (M × O)//0 G
are well-defined and symplectomorphic.

By Lemma 5.5 we have Gp = {e} for all p ∈ µ−1(ξ) if and only if G(q,η) = {e} for all (q, η) ∈ µ−1
O (0)

which are the conditions of Theorem 4.5 (Symplectic Reduction) ensuring that M//ξ Gξ and (M × O)//0 G
are both well-defined. Thus, it only remains to show that they are symplectomorphic. We have broken the
proof into three steps.

Step 1. Let
F : µ−1(ξ) −→ µ−1

O (0), F (p) = (p, ξ).

Then, there is a smooth bijective map Φ such that the following diagram commutes:

µ−1(ξ) µ−1
O (0)

µ−1(ξ)/Gξ µ−1
O (0)/G

F

π1 π2

Φ

Proof. For all p ∈ µ−1(ξ) and g ∈ Gξ, we have

F (g · p) = (g · p, µ(g · p)) = (g · p,Ad∗gµ(p)) = g · (p, µ(p)) = g · F (p),

so F intertwines the actions. In particular, π2 ◦ F is a smooth map which is constant on the fibres of π1,
and since π1 is a smooth submersion, this implies that there exists a unique smooth map Φ such that the
above diagram commutes.

Next, we show that Φ is bijective. Let [(q, η)] ∈ µ−1
O (0)/G. Then, η ∈ O so there exists g ∈ G such that

Ad∗gη = ξ, and hence µ(g · q) = Ad∗gµ(q) = Ad∗gη = ξ so g · q ∈ µ−1(ξ). Thus, Φ([g · q]) = π2(F (g · q)) =
[(g ·q, ξ)] = [(q,Ad∗g−1ξ)] = [(q, η)], so Φ is surjective. Now, suppose Φ([p]) = Φ([q]). Then, π2(p, ξ) = π2(q, ξ)
so there exists g ∈ G such that (p, ξ) = (g · q,Ad∗gξ). Thus, p = g · q for g ∈ Gξ so [p] = [q] ∈ µ−1(ξ)/G and
hence Φ is injective.
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Step 2. The map Φ is a diffeomorphism.

Proof. Since Φ is a smooth bijection, to show that it is a diffeomorphism it suffices to show that it is a
smooth submersion. Since π1 is a surjective smooth submersion, it suffices to show that π2 ◦ F is a smooth
submersion (indeed since (dπ1)p is surjective we get rankπ(p)(Φ) = rankp(Φ ◦ π1) = rankp(π2 ◦ F )). We use
the fact that a smooth map is a smooth submersion if and only if every point of the domain is in the image
of a smooth local section. In other words, we let p ∈ µ−1(ξ) and seek an open subset W ⊆ µ−1

O (0) with a
smooth map ρ : W → µ−1(ξ) such that (π2 ◦F ) ◦ρ = IdW and p ∈ ρ(W ). By Proposition 2.3, the orbit map

G −→ O, g 7−→ Ad∗gξ

is a smooth submersion, so the characterization of smooth submersions in terms of local sections applies to
this particular map and hence there exists an open set V ⊆ O with a smooth map ϕ : V → G such that
e ∈ ϕ(V ) and

Ad∗ϕ(η)ξ = η, for all η ∈ V.

Since e ∈ ϕ(V ), there is η0 ∈ V such that e = ϕ(η0). But then ξ = Ad∗eξ = Ad∗ϕ(η0)ξ = η0. Thus, ξ ∈ V and
ϕ(ξ) = e. Now, let

U = {(q, η) ∈ µ−1
O (0) : η ∈ V } = µ−1

O (0) ∩ (M × V ).

This an open subset of µ−1
O (0) sinceM×V is open inM×O and µ−1

O (0) has the subspace topology inherited
from M × O since it is embedded. Now, for (q, η) ∈ U we have Ad∗ϕ(η)ξ = η = µ(q), so Ad∗ϕ(η)−1µ(q) = ξ
and hence

µ(ϕ(η)−1 · q) = Ad∗ϕ(η)−1µ(q) = ξ.

Thus, we have a smooth map

σ : U ⊆ µ−1
O (0) −→ µ−1(ξ), (q, η) 7−→ ϕ(η)−1 · q.

We have µ(p) = ξ ∈ V so (p, ξ) ∈ U and σ(p, ξ) = ϕ(ξ)−1 · p = e−1 · p = p. Thus, p ∈ σ(U). Now, since π2 is
a smooth submersion, there exists an open set W ⊆ µ−1

O (0)/G and a smooth local section τ : W → µ−1
O (0)

such that (p, ξ) ∈ τ(W ). Then, W̃ := τ−1(U) is an open subset of W and hence we have a smooth map

ρ : W̃
τ−→ U

σ−→ µ−1(ξ).

To show that it is a local section of π2 ◦ F let w ∈ W̃ . Then, w ∈W so τ(w) = (q, η) for some (q, η) ∈ U ⊆
µ−1
O (0) such that π2(q, η) = w. Then,

((π2 ◦ F ) ◦ ρ)(w) = π2(F (σ(q, η))) = π2(F (ϕ(η)−1 · q)) = π2(ϕ(η)−1 · q, ξ)
= π2(q,Ad∗ϕ(η)ξ) = π2(q, η) = w.

Hence, ρ is a smooth local section of π2 ◦ F . Moreover, (p, ξ) ∈ τ(W ) so (p, ξ) = τ(w) for some w ∈ W .
Also, τ(w) = (p, ξ) ∈ U so w ∈ τ−1(U) = W̃ . Thus, p = σ(p, ξ) = σ(τ(w)) = ρ(w) ∈ ρ(W̃ ). This concludes
the proof that π2 ◦ F is a smooth submersion, and hence that Φ is a diffeomorphism.

Step 3. The map Φ is a symplectomorphism.

Proof. Let

M ×O

M O

ρ1 ρ2
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be the canonical projections. Let βO be the Kostant-Kirillov form on O. Then, by definition, the symplectic
form on M ×O is

α := ρ∗1ω − ρ∗2βO,
and the symplectic form on (M × O)//0 G is the unique 2-form ωO such that π∗2ωO = i∗2α, where i2 :
µ−1
O (0) ↪→ M × O is the inclusion map. Now, ωξ is the unique 2-form on M//ξ Gξ such that π∗1ωξ = i∗1ω,

where i1 : µ−1(ξ) ↪→M , so it suffices to that π∗1Φ∗ωO = i∗1ω. We have

π∗1Φ∗ωO = (Φ ◦ π1)∗ωO = (π2 ◦ F )∗ωO = F ∗π∗2ωO = F ∗i∗2α = F ∗i∗2(ρ∗1ω − ρ∗2βO)

= (ρ1 ◦ i2 ◦ F )∗ω − (ρ2 ◦ i2 ◦ F )βO.

Now, for all p ∈ µ−1(ξ) we have

ρ1 ◦ i2 ◦ F (p) = ρ1(p, ξ) = p = i1(p),

so (ρ1 ◦ i2 ◦ F )∗ω = i∗1ω, and
ρ2 ◦ i2 ◦ F (p) = ρ2(p, ξ) = ξ,

so (ρ2 ◦ i2 ◦ F )∗βO = 0. Thus, π∗1Φ∗ωO = i∗1ω, and hence Φ∗ωO = ωξ.

6 Kähler Reduction
Let us first recall the definition of a Kähler manifold.

Definition 6.1. Let X be a smooth manifold. An almost Hermitian structure on X is a triple (I, g, ω),
where I is an almost complex structure, g is a Riemannian metric and ω is a 2-form such that

ω(X,Y ) = g(IX, Y ), ∀X,Y.

In that case, the triple is said to be compatible. An almost hermitian manifold (X, I, ω, g) is called Kähler
if I is integrable and ω is closed.

The following standard result will be useful.

Theorem 6.2. Let (X, I, g, ω) be an almost hermitian manifold. Then, the following are equivalent:

(1) (X, I, g, ω) is Kähler,

(2) ∇ω = 0,

(3) ∇I = 0.

We showed how to endow a symplectic form βO on each coadjoint orbit O ⊆ g∗. But there is also a way
to give a Kähler metric on O whose Kähler form is βO.

Theorem 6.3. Let G be a compact Lie group and O ⊆ g∗ a coadjoint orbit. There is a unique G-invariant
Kähler metric on O that is compatible with its Kostant-Kirillov form.

Proof. See [1], Chapter 8.

This result will be important when we use the shifting trick to show thatM//ξGξ is Kähler by identifying
it with (M ×O)//0 G.

Now, a basis fact from Riemannian geometry:

Lemma 6.4. Let (M, g) be a Riemannian manifold, and

f : M −→ Rk, p 7−→ (f1(p), . . . , fk(p))

a smooth function with regular value c ∈ Rk. Let M̃ = f−1(c) be the induced submanifold of M . Then,
{grad(f1), . . . , grad(fk)} is a smooth global frame for the normal bundle NM̃ over M̃ .
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Proof. Let Xi = grad(fi). First, it is clear that (Xi)p ∈ Np for all p ∈ f−1(c) since g((Xi)p, Yp) = (dfi)pYp =
0 for all Yp ∈ Tpf

−1(c) = ker dfp. Moreover, since f−1(c) has dimension n − k, N is a bundle of rank
n − (n − k) = k, so it suffices to show that X1, . . . , Xk are linearly independent at each point p ∈ f−1(c).
By definition, Xi = grad(fi) corresponds to dfi under the tangent-cotangent isomorphism provided by the
metric g, so it suffices to that (df1)p, . . . , (dfk)p ∈ T ∗pM are linearly independent at each point p ∈ f−1(c).
But this is equivalent to the condition that dfp is surjective.

We are now ready to state and prove the main theorem of this essay.

Theorem 6.5 (Kähler Reduction). Let (M,ω, g, I) be a Kähler manifold and G a compact Lie group acting
on M isometrically and in a Hamiltonian way. Let µ be the moment map for this action and suppose that
ξ ∈ g∗ is such that Gp = {e} for all p ∈ µ−1(ξ).

Then, the symplectic reduction (M//ξ Gξ, ωξ) (whose existence is guaranteed by Theorem 4.5) admits a
Kähler metric gξ that is compatible with ωξ. Moreover, if ξ is central, then gξ is the quotient metric induced
by i∗g, where i : µ−1(ξ) ↪→M is inclusion.

We have broken the proof into eight steps.

Step 1. By the shifting trick, it suffices to consider the case where ξ is central.

Proof. Suppose that the theorem holds for all central elements of g∗. Suppose that ξ ∈ g∗ is such that
Gp = {e} for all p ∈ µ−1(ξ). Let O ⊆ g∗ be the coadjoint orbit through ξ. By Theorem 5.6 (The Shifting
Trick), M//ξ Gξ is symplectomorphic to (M ×O)//0 G. But 0 ∈ g∗ is central and M ×O is Kähler (Theorem
6.3), so (M × O)//0 G admits Kähler metric compatible with its symplectic form. Thus, we can use the
symplectomorphism to get a Kähler metric on M//ξ Gξ that is compatible with ωξ.

Note, however, that in this case there is nothing that guarantees that the metric gξ so produced is the
quotient metric induced by g. But this will be true if ξ is central.

Thus, from now on, we assume that ξ is central. In particular, Gξ = G so the reduced space is M//ξ G =

µ−1(ξ)/G. Let
π : µ−1(ξ) −→ µ−1(ξ)/G

be the canonical projection. Let V be the vertical bundle of this principal G-bundle and let H be its
orthogonal complement with respect to the metric i∗g on µ−1(ξ). Let N be the normal bundle of the
submanifold µ−1(ξ) ⊆M . Then, for each p ∈ µ−1(ξ) we have an orthogonal decomposition

TpM = Np ⊕ Vp ⊕Hp.

Step 2. The horizontal bundle H is invariant under I.

Proof. First note that for X ∈ g, we have

g(gradµX , Y ) = dµX(Y ) = ω(X#, Y ) = g(IX#, Y ),

and hence
gradµX = IX#.

Now, let X1, . . . , Xk be a basis for g and ξ1, . . . , ξk ∈ g∗ its dual basis. Then,

µ(p) = µX1(p) ξ1 + · · ·+ µXk(p) ξk, ∀p ∈M,

and hence, by Lemma 6.4, a global frame for the normal bundle N is

{gradµX1 , . . . , gradµXk} = {IX#
1 , . . . , IX

#
k }.

Moreover, since Gp = {e} for all p ∈ µ−1(ξ), Proposition 2.3 gives that {X#
1 , . . . , X

#
k } is a basis for Vp.

Therefore, at each point p ∈ µ−1(ξ), the set

{X#
1 , . . . , X

#
k , IX

#
1 , . . . , IX

#
k }
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is a basis for Np ⊕ Vp. Hence, Np ⊕ Vp is invariant under I. Now, let v ∈ Hp. Then, for all w ∈ Np ⊕ Vp we
have

g(I(v), w) = −g(v, I(w)) = 0

since v ∈ Hp = (Np ⊕ Vp)⊥ and I(w) ∈ Np ⊕ Vp. Thus, I(v) ∈ (Np ⊕ Vp)⊥ = Hp and hence Hp is preserved
by I.

Note that for a smooth vector field X on M//ξ G = µ−1(ξ)/G, the horizontal lift X∗ is not a vector field
on M (only on µ−1(ξ)) so I(X∗) is undefined in the usual sense. However, since I preserves H it does define
a smooth section of H:

Step 3. For each smooth vector field X on M//ξ G, the map

µ−1(ξ) −→ H, p 7−→ Ip(X
∗
p )

is a smooth G-invariant section of H which we denote by IX∗.

Proof. Since I preserves H, it defines a smooth bundle homomorphism Ī : H → H and our map is the
composition Ī ◦X∗, so it is smooth. It is G-invariant since X∗ is G-invariant and G preserves I.

Since IX∗ is a G-invariant horizontal section, it is the lift of a unique smooth vector field π∗(IX∗) on
M//ξ G. Hence, we have a way of applying I to vector fields on M//ξ G. The next step is to show that this
defines an almost complex structure on M//ξ G.

Step 4. There is an almost complex structure Iξ on M//ξ G defined by

IξX = π∗(IX
∗),

for all smooth vector fields X on M//ξ G.

Proof. To show that Iξ is a type-(1, 1) tensor field, we have to show that it is C∞ linear. This follows from
the C∞ linear property of horizontal lifts (Proposition 3.1), since

Iξ(fX) = π∗(I(fX)∗) = π∗(I((f ◦ π)X∗)) = π∗((f ◦ π)IX∗) = fπ∗(IX
∗)

= fIξ(X).

Now we need to show that I2
ξ = −Id. But, by definition we have (IξX)∗ = IX∗ so

(I2
ξX)∗ = (Iξ(Iξ(X)))∗ = I((Iξ(X))∗) = I(I(X∗)) = −X∗ = (−X)∗,

and hence I2
ξX = −X.

Step 5. Let gξ be the quotient metric on M//ξ G induced by i∗g (Theorem 3.3). Then, the Levi-Civita
connection of gξ is given by

∇̄XY = π∗(P̂H(∇X∗Y ∗))

where X∗ and Y ∗ are extended arbitrarily to a neighborhood of µ−1(ξ), ∇ is the Levi-Civita connection of
g,

P̂H : TM −→ H

is the orthogonal projection, and π∗ is the push-forward of G-invariant horizontal sections.

Proof. Let ∇̃ be the Levi-Civita connection of i∗g on µ−1(0). Then, by Theorem 3.4, ∇̃ is given explicitely
by

∇̃XY = (∇XY )>

where X,Y are extended arbitrarily to a neighborhood of µ−1(ξ) and > is the orthogonal projection onto
Tµ−1(ξ) with respect to the metric g on M .
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Now, let ∇̄ be the Levi-Civita connection of gξ on µ−1(ξ)/G. Then, by Theorem 3.3 and 3.4 together,
the connection ∇̄ is given by first projecting ∇X∗Y ∗ onto Tµ−1(ξ), and then projecting onto H and using
the correspondence between G-invariant sections of H and vector fields on M/G. Symbolically,

∇̄XY = π∗(PH((∇X∗Y ∗)>))

= π∗(P̂H(∇X∗Y ∗)).

Step 6. The triple (Iξ, gξ, ωξ) is compatible.

Proof. For all smooth vector fields X,Y on µ−1(ξ)/G and all p ∈ µ−1(ξ), we have

ωξ(Xπ(p), Yπ(p)) = ωξ(dπp(X
∗
p ), dπp(Y

∗
p )) = π∗ωξ(X

∗
p , Y

∗
p ) = i∗ω(X∗p , Y

∗
p )

= i∗g(I(X∗p ), Y ∗p ) = i∗g((IξX)∗p, Y
∗
p ) = gξ((IξX)π(p), Yπ(p)),

so ωξ(X,Y ) = gξ(IξX,Y ).

Step 7. ∇̄Iξ = 0.

Proof. Let X and Y be smooth vector fields onM//ξG. Since I preserves H, it commutes with the projection
P̂H : TM → H. Moreover, by definition we have IξY = π∗(IY

∗) so (IξY )∗ = IY ∗, and hence

(∇̄XIξY )∗ = P̂H(∇X∗IY ∗) = P̂H(I∇X∗Y ∗) = IP̂H(∇X∗Y ∗) = I(∇̄XY )∗.

Thus, ∇̄XIξY = Iξ(∇̄XY ) and hence ∇̄Iξ = 0.

Step 8. (M//ξ G, Iξ, gξ, ωξ) is a Kähler manifold.

Proof. The triple (Iξ, gξ, ωξ) is compatible by Step 6 and ∇̃Iξ = 0 by Step 7. Hence, (M//ξ G, Iξ, gξ, ωξ) is
Kähler by Theorem 6.2.

7 Hyperkähler Reduction
We now discuss the Hyperkähler analogue of the preceding theorem.

Definition 7.1. A Hyperkähler manifold is a Riemannian manifold (M, g) that is Kähler with respect
to three almost complex structures I, J,K which satisfy the quaternionic identities

I2 = J2 = K2 = IJK = −1.

Now, suppose that G is a compact Lie group acting isometrically on a Hyperkähler manifoldM . Suppose
also that the action is Hamiltonian with respect to each Kähler form ω1, ω2 and ω3. Let

µi : M −→ g∗, i = 1, 2, 3

be the corresponding moment maps, and combine them into the map

µ := µ1 × µ2 × µ3 : M −→ g∗ × g∗ × g∗.

Theorem 7.2 (Hyperkähler Reduction). Suppose that ξ = (ξ1, ξ2, ξ3) ∈ g∗ × g∗ × g∗ is such that Gp = {e}
for all p ∈ µ−1

1 (ξ1) ∪ µ−1
2 (ξ2) ∪ µ−1

3 (ξ3) and each ξi is central. Then, M///ξ G := µ−1(ξ)/G is a smooth
manifold and inherits a Hyperkähler structure that is compatible with the quotient metric induced by g.

Before the proof, here is a simple lemma.
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Lemma 7.3. Let (M,ω,G, µ) be a Hamiltonian space and i : N ↪→M a G-invariant symplectic submanifold.
Then, (N, i∗ω,G, µ ◦ i) is a Hamiltonian space.

Proof. Since N is G-invariant and an embedded submanifold, the action ψ : G ×M → M restricts to a
smooth action ψ̃ : G×N → N . Now, for all g ∈ G we have i◦ ψ̃g = ψg ◦ i so ψ̃∗g i∗ω = (i◦ ψ̃)∗ω = (ψg ◦ i)∗ω =
i∗ψ∗gω = i∗ω and hence G acts by symplectomorphisms on N .

For X ∈ g, let X# be the vector field on M generated by X and X#̃ the vector field on N generated
by X. Then, dip(X#̃

p ) = dip((dψ̃
p
e (Xe)) = d(i ◦ ψ̃p)e(Xe) = (dψp)e(Xe) = X#

p . Moreover, (µ ◦ i)X(p) =

〈µ(i(p)), X〉 = µX(p) so (µ ◦ i)X = µX ◦ i and hence

d(µ ◦ i)Xp (Yp) = d(µX ◦ i)p(Yp) = dµXp (dip(Yp)) = ωp(X
#
p , dip(Yp))

= ωp(dip(X
#̃
p ), dip(Yp)) = (i∗ω)p(X

#̃
p , Yp).

Thus, (µ ◦ i)X is a hamiltonian function for the vector field X#̃.
Finally, for all g ∈ G and p ∈ N , we have

(µ ◦ i)(ψ̃g(p)) = µ(ψg(p)) = Ad∗g(µ(p)) = Ad∗g((µ ◦ i)(p)),

so µ ◦ i is equivariant with respect to the action of G on N .

Proof of Theorem 7.2 (Hyperkähler Reduction). Let

µ+ := µ2 + iµ3 : M −→ g∗ ⊗ C.

Then,

dµX+ (Y ) = dµX2 (Y ) + i dµX3 (Y )

= ω2(X#, Y ) + i ω3(X#, Y )

= g(JX#, Y ) + i g(KX#, Y ),

so

dµX+ (IY ) = g(JX#, IY ) + i g(KX#, IY )

= −g(IJX#, Y )− i g(IKX#, Y )

= −g(KX#, Y ) + i g(JX#, Y )

= i ·
(
g(JX#, Y ) + ig(KX#, Y )

)
= i · dµX+ (Y ).

Therefore, µX+ : M → C is holomorphic with respect to the complex structure I. This holds for all X ∈ g so
µ+ is holomorphic with respect to I.

By the assumption that Gp = {e} for all p ∈ µ−1
1 (ξ1) ∪ µ−1

2 (ξ2) ∪ µ−1
3 (ξ3), Lemma 4.1 says that ξ1, ξ2

and ξ3 are regular values of µ1, µ2 and µ3, respectively. In particular, ξ2 + iξ3 is a regular value of µ+, so
N := µ−1

+ (ξ2 + iξ3) = µ−1
2 (ξ2) ∩ µ−1

3 (ξ3) is a complex submanifold of M with respect to I. Thus, N is a
Kähler submanifold of (M, I, g, ω1).

Let ij : µ−1
j (ξj) ↪→ M and i+ : N ↪→ M be the inclusions. Since each ξi is central, G acts on each

µ−1
i (ξ) and hence G acts on N . By Lemma 7.3 this action is Hamiltonian way with moment map µ1 ◦ i+

. Moreover, Gp = {e} for all p ∈ (µ1 ◦ i+)−1(ξ1) = µ−1
1 (ξ1) ∩ N = µ−1(p), so we can apply Theorem 6.5

(Kähler Reduction), to obtain a Kähler structure on (µ1 ◦ i+)−1(ξ1)/G = µ−1(ξ)/G =: M///ξ G.
We will repeat the argument for J and K to produce three Kähler structures on M///ξ G. However, we

need to ensure that the Kähler metric is the same in each case, which is not immediately apparent from its
construction. To do that, we will use the last part of the Theorem 6.5 (Kähler Reduction) that says that for
a central ξ ∈ g∗, the Kähler metric constructed on the reduced space is the quotient metric. Let
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µ−1(ξ) N

M

j

i i+

be the natural inclusions, let

(µ1 ◦ i+)−1(ξ1) µ−1(ξ)

(µ1 ◦ i+)−1(ξ1)/G µ−1(ξ)/G.

π π

be the natural projection, and let gξ be the Kähler metric that we just produced on µ−1(ξ)/G. Since ξ1 is
central, Theorem 6.5 (Kähler Reduction) ensures that

gξ(X,Y ) ◦ π = j∗(i∗+g)(X∗, Y ∗) = i∗g(X∗, Y ∗).

Thus, the Kähler metric produced is the quotient metric on µ−1(ξ)/G.
Now, by repeating the argument with J , and K, we get that µ−1(ξ)/G has three Kähler structures,

each compatible with the quotient metric gξ. Hence, it only remains to show that the complex structures
Ī , J̄ , K̄ induced on µ−1(ξ)/G still satisfy the quaternionic identities. But this is clear since, for example, Ī
is characterized by (ĪX)∗ = IX∗ and hence

(Ī J̄X)∗ = I(J̄X)∗ = IJX∗ = KX∗ = (K̄X)∗,

so Ī J̄ = K̄. All other identities are obtained similarly.

8 An Example
Consider Cn with the standard Kähler structure. Fix integers k1, . . . , kn and consider the action of U(1) on
Cn given by

ψ : U(1)× Cn −→ Cn, λ · (z1, . . . , zn) = (λk1z1, . . . , λ
knzn).

We claim that this action is Hamiltonian with moment map

µ : Cn −→ u(1)∗ ∼= R, µ(z1, . . . , zn) = −1

2

(
k1|z1|2 + · · ·+ kn|zn|2

)
.

We have
u(1) = {w ∈ C∗ : w + w̄ = 0} = iR

and the exponential map is
exp : iR −→ U(1), ia 7−→ eia.

Thus, if X = ia ∈ u(1), the vector field X# on Cn generated by X is

X#
(z1,...,zn) =

d

dt

∣∣∣
t=0

ψeiat(z1, . . . , zn)

=
d

dt

∣∣∣
t=0

(eiak1tz1, . . . , e
iakntzn)

= (iak1z1, . . . , iaknzn)

= a(−k1y1 + ik1x1, . . . ,−kny1n+ iknxn)

= a

n∑
i=1

(
−kiyi

∂

∂xi
+ kixi

∂

∂yi

)
.
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Hence,

X#yω = a

n∑
i=1

(
−kiyi

∂

∂xi
+ kixi

∂

∂yi

)
y

n∑
j=1

dxj ∧ dyj

= a

n∑
j=1

(−kjyj dyj − kjxj dxj)

= dµX ,

so µX is a Hamiltonian function for X#. Also, µ is equivariant since

µ(λk1z1, . . . , λ
knzn) =

n∑
i=1

|λkizi|2 =

n∑
i=1

|zi|2 = µ(z1, . . . , zn),

and the coadjoint action on u(1)∗ is trivial since U(1) is abelian. Thus, µ is a moment map for this action.
Moreover, the action preserves the standard Kähler structure, so we expect to be able to produce some

Kähler manifolds by taking the quotient µ−1(c)/U(1) for some suitable values of c and k1, . . . , kn ∈ Z. Here
is a preliminary result.

Lemma 8.1. Suppose that k1, . . . , kn ∈ Z and c ∈ R have the property that for all (z1, . . . , zn) ∈ µ−1(c) we
have

gcd{ki : zi 6= 0} = 1.

Then µ−1(c)/U(1) is a smooth Kähler manifold.

Proof. Since U(1) is abelian, every element of u(1) is central. Hence, from Theorem 6.5 (Kähler Reduction),
it suffices to show that the stabilizer U(1)(z1,...,zn) is trivial for all (z1, . . . , zn) ∈ µ−1(c). Let ρk = {z ∈ C :

zk = 1} be the group of kth root of unity, and recall the basis fact that

ρk1 ∩ · · · ∩ ρk` = ρgcd(k1,...,k`).

Then,

U(1)(z1,...,zn) = {λ ∈ U(1) : λkizi = zi,∀i}
= {λ ∈ U(1) : λki = 1,∀i ∈ {j : zj 6= 0}}
= {λ ∈ U(1) : λ ∈ ρki ,∀i ∈ {j : zj 6= 0}}
= ρgcd{ki:zi 6=0},

which is trivial if gcd{ki : zi 6= 0} = 1.

Proposition 8.2. The quotient µ−1(c)/U(1) is a smooth Kähler manifold in the following situations:

(1) ki ≤ 1 for all i, and c < 0.

(2) ki ≥ −1 for all i, and c > 0.

(3) −1 ≤ ki ≤ 1 for all i, and c 6= 0.

Proof. (1) We may assume that at least one kj = 1 since otherwise µ−1(c) = ∅. Now, if µ(z1, . . . , zn) =
− 1

2

(
k1|z1|2 + · · ·+ kn|zn|2

)
= c < 0 then, zi 6= 0 for some i with ki = 1 since otherwise µ(z1, . . . , zn) ≥ 0.

Hence, 1 ∈ {kj : zj 6= 0} so gcd{kj : zj 6= 0} = 1 and µ−1(c)/U(1) is Kähler by Lemma 8.1. (2) follows by
the same argument, and (3) holds by (1) and (2).

The cases (1) and (2) are completely analogous, so we will focus on case (2).
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Proposition 8.3. Suppose that we are in the situation where ki ≥ −1 and c > 0. By reordering and
relabelling the ki’s, we may assume that the action is given by

λ · (z1, . . . , zn) = (λ−1z1, . . . , λ
−1zm, λ

k1zm+1, . . . , λ
krzn), λ ∈ U(1),

where k1, . . . , kr ≥ 0 and n = m+ r. Let O(`) be the `th element of Pic(CPm−1). Then,

Cn//c U(1) ∼= O(k1)⊕ · · · ⊕ O(kr),

as complex vector bundles (or Cn//c U(1) ∼= CPm−1 if r = 0).

Proof. By definition, µ−1(c) is the set of all (z1, . . . , zn) ∈ Cn such that

|z1|2 + · · ·+ |zm|2 = 2c+ k1|zm+1|2 + · · ·+ kr|zn|2. (8.1)

Let [z1, . . . , zn] denote the equivalence class of (z1, . . . , zn) ∈ Cn under the given U(1)-action. Then, we have
a well-defined smooth map

Cn//c U(1) −→ CPm−1, [z1, . . . , zn] 7−→ [z1, . . . , zm],

where [z1, . . . , zm] is the equivalence class of (z1, . . . , zm) under the C∗ action on Cm − {0}, viewing CPm−1

as (Cm−{0})/C∗. This is well-defined since (8.1) shows that (z1, . . . , zm) 6= 0, and the m-tuple (z1, . . . , zm)
is determined up to (λ−1z1, . . . , λ

−1zm) for λ ∈ U(1) ⊆ C∗.
Now, let Ui be the open subset of CPm−1 consisting of elements [z1, . . . , zm] such that zi 6= 0. Then, it

is easy to see that

Φi : π−1(Ui) −→ Ui × Cr

[z1, . . . , zn] 7−→

(
[z1, . . . , zm],

(
zi
|zi|

)k1
zm+1, . . . ,

(
zi
|zi|

)kr
zn

)
is a well-defined smooth map with smooth inverse

Φ−1
i : Ui × Cr −→ π−1(Ui)

([w1, . . . , wm], ζ1, . . . , ζr) 7−→

[
ρw1, . . . , ρwm,

(
|wi|
wi

)k1
ζ1, . . . ,

(
|wi|
wi

)kr
ζr

]
,

where

ρ :=

(
|ζ1|2 + · · ·+ |ζr|2 + 2c

|w1|2 + · · ·+ |wm|2

)1/2

.

Moreover, we find that
Φij := Φi ◦ Φ−1

j : Ui ∩ Uj × Cr −→ Ui ∩ Uj × Cr

is given by

Φij([w1, . . . , wm], (ζ1, . . . , ζr)) =

(
[w1, . . . , wm],

(wi/wj)
k1

|wi/wj |k1
ζ1, . . . ,

(wi/wj)
kr

|wi/wj |kr
ζr

)
.

Thus, Cn//c U(1) is a direct sum of vector bundles Ek1 ⊕ · · · ⊕ Ekr , where E` is the line bundle on CPm−1

with transition functions

τij : Ui ∩ Uj −→ GL(1,C), τij([w1, . . . , wm]) =
(wi/wj)

`

|wi/wj |`
.

But E` is isomorphic to O(`) since the latter has transition functions

ϕij : Ui ∩ Uj −→ GL(1,C), ϕij([w1, . . . , wm]) = (wi/wj)
`

and we have the following smooth homotopy of transition functions

(Ui ∩ Uj)× [0, 1] −→ GL(1,C), ([w1, . . . , wm], t) 7−→ (wi/wj)
`

|wi/wj |(1−t)`
.

Thus, Cn//c U(1) ∼= O(k1)⊕ · · · ⊕ O(kr) as complex vector bundles.
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