Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020 **Midterm Exam** Solutions

1. Prove that there is no largest prime number.

Solution. We want to show that if p is prime, then there is another prime q > p. Let $M = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdots p + 1$, where the first term is the product of all the primes less than or equal to p. Since every natural number greater than 1 has a prime divisor, there exist a prime q dividing M. Then, $q \neq 2, 3, 5, 7, 11, \ldots, p$, since the remainder of the division of M by any of those numbers is 1. Hence, q is not equal to any of the primes less than or equal to p, so q > p.

- **2.** (a) State the Well-Ordering Principle.
 - (b) State the Principle of Mathematical Induction.
 - (c) Prove the Principle of Mathematical Induction from the Well-Ordering Principle.

Solution.

- (a) Every non-empty subset of \mathbb{N} has a smallest element.
- (b) Let S be a subset of \mathbb{N} with the properties that
 - (A) $1 \in S$, and
 - (B) if $k \in S$, then $k + 1 \in S$.
 - Then, $S = \mathbb{N}$.
- (c) Let S be a subset of N satisfying (A) and (B). We want to show that $S = \mathbb{N}$. Equivalently, we want to show that if $T = \{n \in \mathbb{N} : n \notin S\}$ then T is empty. Suppose, by contradiction, that T is not empty. Then, by the Well-Ordering Principle, T has a smallest element $t \in T$. Now, $1 \in S$ by (A) so $1 \notin T$ and hence $t \neq 1$. Thus, t - 1 > 0, so $t - 1 \in \mathbb{N}$. Since t is the smallest element of T and t - 1 < t, we have $t - 1 \notin T$ so $t - 1 \in S$. But then by (B) this implies that $t = (t - 1) + 1 \in S$, so $t \notin T$, contradicting that $t \in T$. Therefore, T has no smallest element, so T is empty and hence $S = \mathbb{N}$.

3. Prove that there are infinitely many natural numbers n which cannot be written as $n = x^3 + y^3$ for some integers x, y.

Solution. [Note: This is very similar to Q4 in Problem Set 1.]

We claim that if $n \equiv 4 \pmod{7}$, then *n* cannot be written as $n = x^3 + y^3$ for $x, y \in \mathbb{Z}$. Hence, all the numbers of the form n = 4 + 7m, for $m \in \mathbb{N}$, have the desired property. To prove the claim, it suffices to show that if $x, y \in \mathbb{Z}$, then $x^3 + y^3 \not\equiv 4 \pmod{7}$. We have

so $x^3 + y^3 \equiv r + s \pmod{7}$ for some $r, s \in \{-1, 0, 1\}$. Thus, $x^3 + y^3 \equiv t \pmod{7}$, for some $t \in \{-2, -1, 0, 1, 2\}$. Since $-2 \equiv 5 \pmod{7}$ and $-1 \equiv 6 \pmod{7}$, we showed that $x^3 + y^3 \equiv t \pmod{7}$ for some $t \in \{0, 1, 2, 5, 6\}$. In particular, $x^3 + y^3 \not\equiv 4 \pmod{7}$.

- 4. (a) State Wilson's Theorem.
 - (b) Use Wilson's Theorem to prove that $2 \cdot (p-3)! \equiv -1 \pmod{p}$ for all primes $p \geq 4$.
 - (c) Use (b) to find all primes $p \ge 4$ such that p divides $36 + 2 \cdot (p-3)!$.

Solution.

- (a) If p is prime then $(p-1)! + 1 \equiv 0 \pmod{p}$.
- (b) Since $p \equiv 0 \pmod{p}$, we have

$$(p-1)! \equiv (p-1) \cdot (p-2) \cdot (p-3)! \pmod{p}$$
$$\equiv (-1) \cdot (-2) \cdot (p-3)! \pmod{p}$$
$$\equiv 2 \cdot (p-3)! \pmod{p}.$$

By Wilson's Theorem, $(p-1)! + 1 \equiv 0 \pmod{p}$ so $(p-1)! \equiv -1 \pmod{p}$ and hence

$$2 \cdot (p-3)! \equiv (p-1)! \equiv -1 \pmod{p}.$$

(c) Let p be prime. Note that $p \mid 36 + 2 \cdot (p-3)!$ if and only if $36 + 2 \cdot (p-3)! \equiv 0 \pmod{p}$. By (b), $36+2 \cdot (p-3)! \equiv 36-1 \equiv 35 \pmod{p}$, so p divides $36+2 \cdot (p-3)!$ if and only if $p \mid 35$. Since the prime factorization of 35 is $35 = 5 \cdot 7$, we get that p divides $36+2 \cdot (p-3)!$ if and only if p = 5 or p = 7.

- 5. Consider the RSA method with the primes p = 5 and q = 13.
 - (a) Only one of the following numbers is a valid encryptor. Which one and why? E = 3, E = 11, E = 14.
 - (b) Use the Euclidean Algorithm to find a decryptor D corresponding to the encryptor E found in part (a) and such that 0 < D < (p-1)(q-1).
 - (c) A number M such that $0 \le M < pq$ has been encrypted with the encryptor E found in part (a) and the result is R = 8. Use the decryptor D found in part (b) to recover M.

Solution.

- (a) E = 11 since this is the only number relatively prime to $(p-1)(q-1) = 4 \cdot 12 = 48$.
- (b) The Euclidean Algorithm gives

$$48 = 11 \cdot 4 + 4$$

$$11 = 4 \cdot 2 + 3$$

$$4 = 3 \cdot 1 + 1$$

$$3 = 1 \cdot 3 + 0$$

 \mathbf{SO}

$$1 = 4 - 3 \cdot 1$$

= 4 - (11 - 4 \cdot 2) \cdot 1
= 4 \cdot 3 - 11 \cdot 1
= (48 - 11 \cdot 4) \cdot 3 - 11 \cdot 1
= 48 \cdot 3 - 11 \cdot 13.

Hence,

$$11 \cdot (48m - 13) = 1 + 48 \cdot (11m - 3)$$

for all $m \in \mathbb{Z}$. We can take m = 1, so

$$D = 48 - 13 = 35$$

is a valid decryptor.

(c) Note that $8^2 = 64 \equiv -1 \pmod{65}$, so

$$R^{D} = 8^{35} = (8^{2})^{17} \cdot 8 \equiv (-1)^{17} \cdot 8 \pmod{65}$$
$$\equiv -8 \pmod{65}$$
$$\equiv 57 \pmod{65}.$$

Hence, M = 57.

- 6. (a) Prove that if p is a prime number, then \sqrt{p} is irrational.
 - (b) Use (a) to prove that $\sqrt{5} + \sqrt{7}$ is irrational.

Solution.

- (a) Suppose, by contradiction, that \sqrt{p} is rational. Then, $\sqrt{p} = \frac{m}{n}$ for some $m, n \in \mathbb{N}$. Moreover, by dividing by their greatest common divisor if necessary, we can assume that m and n are relatively prime. Then, $p = (\sqrt{p})^2 = \left(\frac{m}{n}\right)^2 = \frac{m^2}{n^2}$, so $pn^2 = m^2$. In particular, $p \mid m^2$. Since p is prime, this implies that $p \mid m$. Hence, we can write m = kp for some $k \in \mathbb{N}$. Then, $pn^2 = m^2 = (kp)^2 = k^2p^2$ and by dividing both sides by p, we get $n^2 = k^2p$. In particular, $p \mid n^2$ and again since p is prime this implies that $p \mid n$. But then p is a common divisor of m and n and p > 1, contradicting that m and n are relatively prime. Thus, \sqrt{p} is irrational.
- (b) Suppose, by contradiction, that $\sqrt{5} + \sqrt{7} = r \in \mathbb{Q}$. Then, $\sqrt{5} = r \sqrt{7}$ so $5 = (r \sqrt{7})^2 = r^2 2r\sqrt{7} + 7$ and hence

$$\sqrt{7} = \frac{r^2 + 2}{2r}.$$

But r is rational, so the right-hand side is rational, and this contradicts part (a) since 7 is prime. Thus, $\sqrt{5} + \sqrt{7}$ is irrational.

- 7. (a) Define the Euler ϕ function.
 - (b) State Euler's Theorem.
 - (c) Use (b) to find a multiplicative inverse of 2^{29} modulo 9.

Solution.

- (a) For $m \in \mathbb{N}$, $\phi(m)$ is the number of elements of $\{1, \ldots, m\}$ that are relatively prime to m.
- (b) If m is a natural number greater than 1 and a is a natural number that is relatively prime to m, then $a^{\phi(m)} \equiv 1 \pmod{m}$.
- (c) We have $\phi(9) = 6$ and gcd(2,9) = 1, so $2^6 \equiv 1 \pmod{9}$ by Euler's Theorem. Hence,

$$2^{29} \cdot 2 \equiv 2^{30} \equiv (2^6)^5 \equiv 1^5 \equiv 1 \pmod{9},$$

so 2 is a multiplicative inverse of 2^{29} modulo 9.