Concepts in Abstract Mathematics

MAT246 LEC0101 Winter 2020
Midterm Exam
Solutions

1. Prove that there is no largest prime number.

Solution. We want to show that if p is prime, then there is another prime ¢ > p. Let
M=2-3-5-7-11---p+ 1, where the first term is the product of all the primes less
than or equal to p. Since every natural number greater than 1 has a prime divisor,
there exist a prime g dividing M. Then, q # 2,3,5,7,11, ..., p, since the remainder of
the division of M by any of those numbers is 1. Hence, ¢ is not equal to any of the
primes less than or equal to p, so g > p.

2. (a) State the Well-Ordering Principle.
(b) State the Principle of Mathematical Induction.
(c) Prove the Principle of Mathematical Induction from the Well-Ordering Principle.

Solution.

(a) Every non-empty subset of N has a smallest element.
(b) Let S be a subset of N with the properties that

(A) 1 €S, and

(B) if ke S, thenk+1€S.

Then, S = N.

(c) Let S be a subset of N satisfying (A) and (B). We want to show that S = N.
Equivalently, we want to show that if T = {n € N : n ¢ S} then T is empty.
Suppose, by contradiction, that 7" is not empty. Then, by the Well-Ordering
Principle, T" has a smallest element ¢ € T. Now, 1 € S by (A) so 1 ¢ T and
hence t #% 1. Thus, t —1 > 0, sot — 1 € N. Since ¢ is the smallest element of
Tandt—1<t, wehavet—1¢ T sot— 1€ S. But then by (B) this implies
that t =(t—1)+ 1€ S,s0t ¢ T, contradicting that ¢t € T'. Therefore, T has no
smallest element, so T is empty and hence S = N.



3. Prove that there are infinitely many natural numbers n which cannot be written as
n = 23 + 3> for some integers x,y.

Solution. [Note: This is very similar to Q4 in Problem Set 1.]

We claim that if n =4 (mod 7), then n cannot be written as n = 23 +y3 for x,y € Z.
Hence, all the numbers of the form n = 4 4+ 7m, for m € N, have the desired property.
To prove the claim, it suffices to show that if z,y € Z, then x3 + y> # 4 (mod 7). We
have

0°= 0 (mod7)
1? = (mod 7)
2= 1 (mod 7)
33=—1 (mod 7)
4= 1 (mod7)
5°=—-1 (mod 7)

6°=—1 (mod 7),

so 3 +y3=r+s (mod 7) for some 7,5 € {—1,0,1}. Thus, 23 + ¢y =t (mod 7), for
some ¢t € {—2,—1,0,1,2}. Since —2 =5 (mod 7) and —1 = 6 (mod 7), we showed
that x> +y® =t (mod 7) for some t € {0,1,2,5,6}. In particular, z°+y* # 4 (mod 7).

4. (a) State Wilson’s Theorem.
(b) Use Wilson’s Theorem to prove that 2-(p—3)! = —1 (mod p) for all primes p > 4.
(c¢) Use (b) to find all primes p > 4 such that p divides 36 + 2 - (p — 3)!.

Solution.

(a) If p is prime then (p — 1)! + 1 =0 (mod p).
(b) Since p =0 (mod p), we have

p-D=@p-1)-(p-2)-(p—3)! (mod p)

=(-1)-(=2)-(p—3)! (mod p)
=2-(p—3)! (mod p).
By Wilson’s Theorem, (p — 1)! +1 =0 (mod p) so (p —1)! = —1 (mod p) and

hence
2-(p=3)!=(p-1)!=-1 (mod p).

(¢) Let p be prime. Note that p |36 +2-(p—3)!'if and only if 36 +2-(p —3)! =0
(mod p). By (b), 364+2-(p—3)! =36—1 = 35 (mod p), so p divides 36+2-(p—3)!
if and only if p | 35. Since the prime factorization of 35 is 35 = 5 - 7, we get that
p divides 36 +2 - (p—3)!'if and only if p=5or p = 7.
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5. Consider the RSA method with the primes p =5 and ¢ = 13.
(a) Only one of the following numbers is a valid encryptor. Which one and why?
E =3, E =11, E = 14.
(b) Use the Euclidean Algorithm to find a decryptor D corresponding to the encryptor
E found in part (a) and such that 0 < D < (p —1)(¢ — 1).

(¢) A number M such that 0 < M < pq has been encrypted with the encryptor F
found in part (a) and the result is R = 8. Use the decryptor D found in part (b)
to recover M.

Solution.

(a) E = 11 since this is the only number relatively prime to (p—1)(¢—1) = 4-12 = 48.
(b) The Euclidean Algorithm gives

48=11-4+4
11=4-24+3
4=3-1+1
3=1-340
SO
1=4-3-1
=4—-(11-4-2)-1
=4-3—-11-1
=(48—-11-4)-3—-11-1
=48-3—11-13.
Hence,

11-(48m —13) =1+48- (11m — 3)
for all m € Z. We can take m = 1, so
D =48 -13=35

is a valid decryptor.
(c) Note that 82 = 64 = —1 (mod 65), so

RP =8% = (8)7.8=(~1)""-8 (mod 65)
-8 (mod 65)
=57 (mod 65).

Hence, M = 57.



6.

7.

(a)
(b)

Prove that if p is a prime number, then ,/p is irrational.
Use (a) to prove that v/5 + /7 is irrational.

Solution.

(a)

(a)
(b)
()
(a)
(b)

()

Suppose, by contradiction, that /p is rational. Then, /p = = for some m,n €
N. Moreover, by dividing by their greatest common divisor if necessary, we can

assume that m and n are relatively prime. Then, p = (/p)* = (m)2 = m

= —5, SO
pn? = m?. In particular, p | m2. Since p is prime, this implies that Z | m. I—?ence,
we can write m = kp for some k € N. Then, pn? = m? = (kp)* = k%*p? and by
dividing both sides by p, we get n? = k?p. In particular, p | n* and again since p
is prime this implies that p | n. But then p is a common divisor of m and n and
p > 1, contradicting that m and n are relatively prime. Thus, ,/p is irrational.

Suppose, by contradiction, that VE4+ VT =1 €eQ. Then, V5 = r — /7 so
5= (r—+/7)%=1r*—2ry74 7 and hence

r2 4+ 2
7= )
\/_ 2r

But 7 is rational, so the right-hand side is rational, and this contradicts part (a)
since 7 is prime. Thus, /5 + /7 is irrational.

Define the Euler ¢ function.
State Euler’s Theorem.

Use (b) to find a multiplicative inverse of 2% modulo 9.

Solution.

For m € N, ¢(m) is the number of elements of {1, ..., m} that are relatively prime
to m.

If m is a natural number greater than 1 and a is a natural number that is relatively
prime to m, then a®™ =1 (mod m).
We have ¢(9) = 6 and ged(2,9) = 1, so 26 = 1 (mod 9) by Euler’s Theorem.
Hence,

22.2=2"=(2°=1"=1 (mod9),

so 2 is a multiplicative inverse of 22° modulo 9.



