
Concepts in Abstract Mathematics
MAT246 LEC0101 Winter 2020

Midterm Exam
Solutions

1. Prove that there is no largest prime number.

Solution. We want to show that if p is prime, then there is another prime q > p. Let
M = 2 · 3 · 5 · 7 · 11 · · · p + 1, where the first term is the product of all the primes less
than or equal to p. Since every natural number greater than 1 has a prime divisor,
there exist a prime q dividing M . Then, q 6= 2, 3, 5, 7, 11, . . . , p, since the remainder of
the division of M by any of those numbers is 1. Hence, q is not equal to any of the
primes less than or equal to p, so q > p.

2. (a) State the Well-Ordering Principle.

(b) State the Principle of Mathematical Induction.

(c) Prove the Principle of Mathematical Induction from the Well-Ordering Principle.

Solution.

(a) Every non-empty subset of N has a smallest element.

(b) Let S be a subset of N with the properties that

(A) 1 ∈ S, and

(B) if k ∈ S, then k + 1 ∈ S.

Then, S = N.

(c) Let S be a subset of N satisfying (A) and (B). We want to show that S = N.
Equivalently, we want to show that if T = {n ∈ N : n /∈ S} then T is empty.
Suppose, by contradiction, that T is not empty. Then, by the Well-Ordering
Principle, T has a smallest element t ∈ T . Now, 1 ∈ S by (A) so 1 /∈ T and
hence t 6= 1. Thus, t − 1 > 0, so t − 1 ∈ N. Since t is the smallest element of
T and t − 1 < t, we have t − 1 /∈ T so t − 1 ∈ S. But then by (B) this implies
that t = (t− 1) + 1 ∈ S, so t /∈ T , contradicting that t ∈ T . Therefore, T has no
smallest element, so T is empty and hence S = N.
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3. Prove that there are infinitely many natural numbers n which cannot be written as
n = x3 + y3 for some integers x, y.

Solution. [Note: This is very similar to Q4 in Problem Set 1.]

We claim that if n ≡ 4 (mod 7), then n cannot be written as n = x3 + y3 for x, y ∈ Z.
Hence, all the numbers of the form n = 4 + 7m, for m ∈ N, have the desired property.
To prove the claim, it suffices to show that if x, y ∈ Z, then x3 + y3 6≡ 4 (mod 7). We
have

03 ≡ 0 (mod 7)

13 ≡ 1 (mod 7)

23 ≡ 1 (mod 7)

33 ≡ −1 (mod 7)

43 ≡ 1 (mod 7)

53 ≡ −1 (mod 7)

63 ≡ −1 (mod 7),

so x3 + y3 ≡ r + s (mod 7) for some r, s ∈ {−1, 0, 1}. Thus, x3 + y3 ≡ t (mod 7), for
some t ∈ {−2,−1, 0, 1, 2}. Since −2 ≡ 5 (mod 7) and −1 ≡ 6 (mod 7), we showed
that x3+y3 ≡ t (mod 7) for some t ∈ {0, 1, 2, 5, 6}. In particular, x3+y3 6≡ 4 (mod 7).

4. (a) State Wilson’s Theorem.

(b) Use Wilson’s Theorem to prove that 2·(p−3)! ≡ −1 (mod p) for all primes p ≥ 4.

(c) Use (b) to find all primes p ≥ 4 such that p divides 36 + 2 · (p− 3)!.

Solution.

(a) If p is prime then (p− 1)! + 1 ≡ 0 (mod p).

(b) Since p ≡ 0 (mod p), we have

(p− 1)! ≡ (p− 1) · (p− 2) · (p− 3)! (mod p)

≡ (−1) · (−2) · (p− 3)! (mod p)

≡ 2 · (p− 3)! (mod p).

By Wilson’s Theorem, (p − 1)! + 1 ≡ 0 (mod p) so (p − 1)! ≡ −1 (mod p) and
hence

2 · (p− 3)! ≡ (p− 1)! ≡ −1 (mod p).

(c) Let p be prime. Note that p | 36 + 2 · (p− 3)! if and only if 36 + 2 · (p− 3)! ≡ 0
(mod p). By (b), 36+2·(p−3)! ≡ 36−1 ≡ 35 (mod p), so p divides 36+2·(p−3)!
if and only if p | 35. Since the prime factorization of 35 is 35 = 5 · 7, we get that
p divides 36 + 2 · (p− 3)! if and only if p = 5 or p = 7.
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5. Consider the RSA method with the primes p = 5 and q = 13.

(a) Only one of the following numbers is a valid encryptor. Which one and why?
E = 3, E = 11, E = 14.

(b) Use the Euclidean Algorithm to find a decryptor D corresponding to the encryptor
E found in part (a) and such that 0 < D < (p− 1)(q − 1).

(c) A number M such that 0 ≤ M < pq has been encrypted with the encryptor E
found in part (a) and the result is R = 8. Use the decryptor D found in part (b)
to recover M .

Solution.

(a) E = 11 since this is the only number relatively prime to (p−1)(q−1) = 4·12 = 48.

(b) The Euclidean Algorithm gives

48 = 11 · 4 + 4

11 = 4 · 2 + 3

4 = 3 · 1 + 1

3 = 1 · 3 + 0

so

1 = 4− 3 · 1
= 4− (11− 4 · 2) · 1
= 4 · 3− 11 · 1
= (48− 11 · 4) · 3− 11 · 1
= 48 · 3− 11 · 13.

Hence,
11 · (48m− 13) = 1 + 48 · (11m− 3)

for all m ∈ Z. We can take m = 1, so

D = 48− 13 = 35

is a valid decryptor.

(c) Note that 82 = 64 ≡ −1 (mod 65), so

RD = 835 = (82)17 · 8 ≡ (−1)17 · 8 (mod 65)

≡ −8 (mod 65)

≡ 57 (mod 65).

Hence, M = 57.
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6. (a) Prove that if p is a prime number, then
√
p is irrational.

(b) Use (a) to prove that
√

5 +
√

7 is irrational.

Solution.

(a) Suppose, by contradiction, that
√
p is rational. Then,

√
p = m

n
for some m,n ∈

N. Moreover, by dividing by their greatest common divisor if necessary, we can

assume that m and n are relatively prime. Then, p = (
√
p)2 =

(
m
n

)2
= m2

n2 , so
pn2 = m2. In particular, p | m2. Since p is prime, this implies that p | m. Hence,
we can write m = kp for some k ∈ N. Then, pn2 = m2 = (kp)2 = k2p2 and by
dividing both sides by p, we get n2 = k2p. In particular, p | n2 and again since p
is prime this implies that p | n. But then p is a common divisor of m and n and
p > 1, contradicting that m and n are relatively prime. Thus,

√
p is irrational.

(b) Suppose, by contradiction, that
√

5 +
√

7 = r ∈ Q. Then,
√

5 = r −
√

7 so
5 = (r −

√
7)2 = r2 − 2r

√
7 + 7 and hence

√
7 =

r2 + 2

2r
.

But r is rational, so the right-hand side is rational, and this contradicts part (a)
since 7 is prime. Thus,

√
5 +
√

7 is irrational.

7. (a) Define the Euler φ function.

(b) State Euler’s Theorem.

(c) Use (b) to find a multiplicative inverse of 229 modulo 9.

Solution.

(a) For m ∈ N, φ(m) is the number of elements of {1, . . . ,m} that are relatively prime
to m.

(b) If m is a natural number greater than 1 and a is a natural number that is relatively
prime to m, then aφ(m) ≡ 1 (mod m).

(c) We have φ(9) = 6 and gcd(2, 9) = 1, so 26 ≡ 1 (mod 9) by Euler’s Theorem.
Hence,

229 · 2 ≡ 230 ≡ (26)5 ≡ 15 ≡ 1 (mod 9),

so 2 is a multiplicative inverse of 229 modulo 9.
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