Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020 Midterm Exam Solutions

1. Prove that there is no largest prime number.

Solution. We want to show that if p is prime, then there is another prime $q>p$. Let $M=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdots p+1$, where the first term is the product of all the primes less than or equal to p. Since every natural number greater than 1 has a prime divisor, there exist a prime q dividing M. Then, $q \neq 2,3,5,7,11, \ldots, p$, since the remainder of the division of M by any of those numbers is 1 . Hence, q is not equal to any of the primes less than or equal to p, so $q>p$.
2. (a) State the Well-Ordering Principle.
(b) State the Principle of Mathematical Induction.
(c) Prove the Principle of Mathematical Induction from the Well-Ordering Principle.

Solution.

(a) Every non-empty subset of \mathbb{N} has a smallest element.
(b) Let S be a subset of \mathbb{N} with the properties that
(A) $1 \in S$, and
(B) if $k \in S$, then $k+1 \in S$.

Then, $S=\mathbb{N}$.
(c) Let S be a subset of \mathbb{N} satisfying (A) and (B). We want to show that $S=\mathbb{N}$. Equivalently, we want to show that if $T=\{n \in \mathbb{N}: n \notin S\}$ then T is empty. Suppose, by contradiction, that T is not empty. Then, by the Well-Ordering Principle, T has a smallest element $t \in T$. Now, $1 \in S$ by (A) so $1 \notin T$ and hence $t \neq 1$. Thus, $t-1>0$, so $t-1 \in \mathbb{N}$. Since t is the smallest element of T and $t-1<t$, we have $t-1 \notin T$ so $t-1 \in S$. But then by (B) this implies that $t=(t-1)+1 \in S$, so $t \notin T$, contradicting that $t \in T$. Therefore, T has no smallest element, so T is empty and hence $S=\mathbb{N}$.
3. Prove that there are infinitely many natural numbers n which cannot be written as $n=x^{3}+y^{3}$ for some integers x, y.

Solution. [Note: This is very similar to Q4 in Problem Set 1.]
We claim that if $n \equiv 4(\bmod 7)$, then n cannot be written as $n=x^{3}+y^{3}$ for $x, y \in \mathbb{Z}$. Hence, all the numbers of the form $n=4+7 m$, for $m \in \mathbb{N}$, have the desired property. To prove the claim, it suffices to show that if $x, y \in \mathbb{Z}$, then $x^{3}+y^{3} \not \equiv 4(\bmod 7)$. We have

$$
\begin{aligned}
& 0^{3} \equiv 0 \quad(\bmod 7) \\
& 1^{3} \equiv 1 \quad(\bmod 7) \\
& 2^{3} \equiv 1 \quad(\bmod 7) \\
& 3^{3} \equiv-1 \quad(\bmod 7) \\
& 4^{3} \equiv 1 \quad(\bmod 7) \\
& 5^{3} \equiv-1 \quad(\bmod 7) \\
& 6^{3} \equiv-1 \quad(\bmod 7),
\end{aligned}
$$

so $x^{3}+y^{3} \equiv r+s(\bmod 7)$ for some $r, s \in\{-1,0,1\}$. Thus, $x^{3}+y^{3} \equiv t(\bmod 7)$, for some $t \in\{-2,-1,0,1,2\}$. Since $-2 \equiv 5(\bmod 7)$ and $-1 \equiv 6(\bmod 7)$, we showed that $x^{3}+y^{3} \equiv t(\bmod 7)$ for some $t \in\{0,1,2,5,6\}$. In particular, $x^{3}+y^{3} \not \equiv 4(\bmod 7)$.
4. (a) State Wilson's Theorem.
(b) Use Wilson's Theorem to prove that $2 \cdot(p-3)!\equiv-1(\bmod p)$ for all primes $p \geq 4$.
(c) Use (b) to find all primes $p \geq 4$ such that p divides $36+2 \cdot(p-3)$!.

Solution.

(a) If p is prime then $(p-1)!+1 \equiv 0(\bmod p)$.
(b) Since $p \equiv 0(\bmod p)$, we have

$$
\begin{aligned}
(p-1)! & \equiv(p-1) \cdot(p-2) \cdot(p-3)! & & (\bmod p) \\
& \equiv(-1) \cdot(-2) \cdot(p-3)! & & (\bmod p) \\
& \equiv 2 \cdot(p-3)! & & (\bmod p) .
\end{aligned}
$$

By Wilson's Theorem, $(p-1)!+1 \equiv 0(\bmod p)$ so $(p-1)!\equiv-1(\bmod p)$ and hence

$$
2 \cdot(p-3)!\equiv(p-1)!\equiv-1 \quad(\bmod p)
$$

(c) Let p be prime. Note that $p \mid 36+2 \cdot(p-3)$! if and only if $36+2 \cdot(p-3)$! $\equiv 0$ $(\bmod p)$. By $(\mathrm{b}), 36+2 \cdot(p-3)!\equiv 36-1 \equiv 35(\bmod p)$, so p divides $36+2 \cdot(p-3)$! if and only if $p \mid 35$. Since the prime factorization of 35 is $35=5 \cdot 7$, we get that p divides $36+2 \cdot(p-3)$! if and only if $p=5$ or $p=7$.
5. Consider the RSA method with the primes $p=5$ and $q=13$.
(a) Only one of the following numbers is a valid encryptor. Which one and why?

$$
E=3, \quad E=11, \quad E=14
$$

(b) Use the Euclidean Algorithm to find a decryptor D corresponding to the encryptor E found in part (a) and such that $0<D<(p-1)(q-1)$.
(c) A number M such that $0 \leq M<p q$ has been encrypted with the encryptor E found in part (a) and the result is $R=8$. Use the decryptor D found in part (b) to recover M.

Solution.

(a) $E=11$ since this is the only number relatively prime to $(p-1)(q-1)=4 \cdot 12=48$.
(b) The Euclidean Algorithm gives

$$
\begin{aligned}
48 & =11 \cdot 4+4 \\
11 & =4 \cdot 2+3 \\
4 & =3 \cdot 1+1 \\
3 & =1 \cdot 3+0
\end{aligned}
$$

so

$$
\begin{aligned}
1 & =4-3 \cdot 1 \\
& =4-(11-4 \cdot 2) \cdot 1 \\
& =4 \cdot 3-11 \cdot 1 \\
& =(48-11 \cdot 4) \cdot 3-11 \cdot 1 \\
& =48 \cdot 3-11 \cdot 13 .
\end{aligned}
$$

Hence,

$$
11 \cdot(48 m-13)=1+48 \cdot(11 m-3)
$$

for all $m \in \mathbb{Z}$. We can take $m=1$, so

$$
D=48-13=35
$$

is a valid decryptor.
(c) Note that $8^{2}=64 \equiv-1(\bmod 65)$, so

$$
\begin{aligned}
R^{D}=8^{35}=\left(8^{2}\right)^{17} \cdot 8 & \equiv(-1)^{17} \cdot 8 & & (\bmod 65) \\
& \equiv-8 & & (\bmod 65) \\
& \equiv 57 & & (\bmod 65) .
\end{aligned}
$$

Hence, $M=57$.
6. (a) Prove that if p is a prime number, then \sqrt{p} is irrational.
(b) Use (a) to prove that $\sqrt{5}+\sqrt{7}$ is irrational.

Solution.

(a) Suppose, by contradiction, that \sqrt{p} is rational. Then, $\sqrt{p}=\frac{m}{n}$ for some $m, n \in$ \mathbb{N}. Moreover, by dividing by their greatest common divisor if necessary, we can assume that m and n are relatively prime. Then, $p=(\sqrt{p})^{2}=\left(\frac{m}{n}\right)^{2}=\frac{m^{2}}{n^{2}}$, so $p n^{2}=m^{2}$. In particular, $p \mid m^{2}$. Since p is prime, this implies that $p \mid m$. Hence, we can write $m=k p$ for some $k \in \mathbb{N}$. Then, $p n^{2}=m^{2}=(k p)^{2}=k^{2} p^{2}$ and by dividing both sides by p, we get $n^{2}=k^{2} p$. In particular, $p \mid n^{2}$ and again since p is prime this implies that $p \mid n$. But then p is a common divisor of m and n and $p>1$, contradicting that m and n are relatively prime. Thus, \sqrt{p} is irrational.
(b) Suppose, by contradiction, that $\sqrt{5}+\sqrt{7}=r \in \mathbb{Q}$. Then, $\sqrt{5}=r-\sqrt{7}$ so $5=(r-\sqrt{7})^{2}=r^{2}-2 r \sqrt{7}+7$ and hence

$$
\sqrt{7}=\frac{r^{2}+2}{2 r} .
$$

But r is rational, so the right-hand side is rational, and this contradicts part (a) since 7 is prime. Thus, $\sqrt{5}+\sqrt{7}$ is irrational.
7. (a) Define the Euler ϕ function.
(b) State Euler's Theorem.
(c) Use (b) to find a multiplicative inverse of 2^{29} modulo 9.

Solution.

(a) For $m \in \mathbb{N}, \phi(m)$ is the number of elements of $\{1, \ldots, m\}$ that are relatively prime to m.
(b) If m is a natural number greater than 1 and a is a natural number that is relatively prime to m, then $a^{\phi(m)} \equiv 1(\bmod m)$.
(c) We have $\phi(9)=6$ and $\operatorname{gcd}(2,9)=1$, so $2^{6} \equiv 1(\bmod 9)$ by Euler's Theorem. Hence,

$$
2^{29} \cdot 2 \equiv 2^{30} \equiv\left(2^{6}\right)^{5} \equiv 1^{5} \equiv 1 \quad(\bmod 9),
$$

so 2 is a multiplicative inverse of 2^{29} modulo 9 .

