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Problem 1

The goal of this exercise is to prove the following theorem in several steps.

Theorem. Let m and n be natural numbers. Then, there exist unique inte-
gers q and r such that n = qm + r and 0 ≤ r < m.

Recall that q is called the quotient and r the remainder of the division of
n by m.

(a) Let a, b ∈ Z with 0 ≤ a < b. Prove that b divides a if and only if a = 0.

(b) Use part (a) to prove the uniqueness part of the theorem. That is,
show that if there are two pairs q1, r1 ∈ Z and q2, r2 ∈ Z satisfying
n = q1m+ r1, 0 ≤ r1 < m, and n = q2m+ r2, 0 ≤ r2 < m, then q1 = q2
and r1 = r2.

(c) Prove that there exist such q and r when m divides n.

(d) Prove that there exist such q and r when m does not divide n by
applying the well-ordering principle to the set

S = {r ∈ N : r = n− qm for some q ∈ Z}.

Solution

(a) If a = 0 then a = kb with k = 0, so b divides a. Conversely, suppose
that b divides a. Then, a = bk for some k ∈ Z. Note that k ≥ 0 since
a ≥ 0 and b > 0. But also bk = a < b and b > 0 so k < 1 and hence
k = 0. Thus, a = 0 · b = 0.

(b) Without loss of generality, we may assume that r1 ≤ r2. We have
n = q1m + r1 = q2m + r2, so (q1 − q2)m = r2 − r1. In particular, m
divides r2 − r1. Moreover, 0 ≤ r2 − r1 ≤ r2 < m, so, by applying (a)
with a = r2 − r1 and b = m, we get r2 − r1 = 0, and hence r1 = r2.
Now, (q1 − q2)m = r2 − r1 = 0, and since m 6= 0, this implies that
q1 − q2 = 0, so q1 = q2.
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(c) By definition, n = km for some k ∈ Z, so we can take q = k and r = 0.

(d) Note that n = n− 0 ·m ∈ S, so S is not empty. By the Well-Ordering
Principle, S has a smallest element r, which is of the form r = n− qm
for some q ∈ Z. Then, n = qm + r and, since r ∈ N, we have 0 ≤ r,
so the only thing left to show is that r < m. First note that r 6= m
as otherwise n = mq + m = (q + 1)m, so m divides n. If r > m, then
r = m + t for some t > 0. Then, t ∈ N and t = r −m = n− (q + 1)m,
so t ∈ S and t < r, contradicting that r is the smallest element of S.
Thus, r < m.

Problem 2

Prove that the Principle of Complete Mathematical Induction is equivalent
to the Well-Ordering Principle.

That is, first prove the Well-Ordering Principle using the Principle of
Complete Mathematical Induction, and then prove the Principle of Complete
Mathematical Induction using the Well-Ordering Principle.

Solution

Proof of the Well-Ordering Principle using the Principle of Com-
plete Mathematical Induction. We need to show that every non-empty
subset of the set of natural numbers has a smallest element. Equivalently, we
show that if T ⊆ N is a subset of the set of natural numbers with no smallest
element, then T is empty.

Let S be the complement of T in N, i.e.

S = {n ∈ N : n /∈ T}.

We use the Principle of Complete Mathematical Induction to show that S =
N and hence T is empty.

(A) We need to show that 1 ∈ S, i.e. that 1 /∈ T . But if 1 ∈ T , then 1
would be a smallest element of T since every element t ∈ T is in N so
t ≥ 1. Hence, 1 /∈ T , so 1 ∈ S.

(B) Suppose that k ∈ N is such that {1, 2, 3, . . . , k} ⊆ S. We need to show
that k + 1 ∈ S. By assumption, all the numbers 1, 2, 3, . . . , k are not
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in T . Hence, if k + 1 ∈ T , then k + 1 would be a smallest element of T
since every element t ∈ T is a natural number other than 1, 2, 3, . . . , k,
so t ≥ k + 1. Thus, k + 1 /∈ T so k + 1 ∈ S.

By the Principle of Mathematical Induction, S = N, so T is empty.

Proof of the Principle of Complete Mathematical Induction using
the Well-Ordering Principle. Let S ⊆ N be such that

(A) 1 ∈ S

(B) If k ∈ N is such that {1, 2, 3, . . . , k} ⊆ S then k + 1 ∈ S.

We need to show that S = N. Let T be the complement of S in N, i.e.

T = {n ∈ N : n /∈ S}.

We need to show that T is empty. By the Well-Ordering Principle, it suffices
to show that T has no smallest element. Suppose, by contradiction, that T
has a smallest element t ∈ T . By (A) we have 1 ∈ S, so 1 /∈ T , and hence
t > 1. Thus, t = k + 1 for some k ∈ N. Moreover, since t is the smallest
element of T , all natural numbers smaller than t are not in T and hence
they are elements of S, i.e. {1, 2, 3, . . . , k} ⊆ S. By (B), this implies that
k + 1 ∈ S. But k + 1 = t ∈ T so k + 1 /∈ S and we get a contradiction.
Therefore, T has no smallest element, so T is empty by the Well-Ordering
Principle, and hence S = N.

Problem 3

Prove that 172n + 42n + 932n+1 is divisible by 19 for every natural number n.

Solution

We have 17 ≡ −2 (mod 19), 42 ≡ 4 (mod 19), and 93 ≡ −2 (mod 19), so

172n + 42n + 932n+1 ≡ (−2)2n + 4n + (−2)2n+1 (mod 19).

But
(−2)2n + 4n + (−2)2n+1 = 4n + 4n − 2 · 4n = 0

so 172n + 42n + 932n+1 ≡ 0 (mod 19) for every n ∈ N.
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Problem 4

Prove that there are no solutions to the equation x3 + y3 = 7777781 such
that both x and y are integers.

Solution

Note that 7777781 = 7 · 1111111 + 4, so

7777781 ≡ 4 (mod 7)

Hence, it suffices to show that if x, y ∈ Z, then x3 + y3 6≡ 4 (mod 7). We
have

03 ≡ 0 (mod 7)

13 ≡ 1 (mod 7)

23 ≡ 1 (mod 7)

33 ≡ −1 (mod 7)

43 ≡ 1 (mod 7)

53 ≡ −1 (mod 7)

63 ≡ −1 (mod 7),

so x3 + y3 ≡ r + s (mod 7) for some r, s ∈ {−1, 0, 1}. Thus, x3 + y3 ≡ t
(mod 7), for some t ∈ {−2,−1, 0, 1, 2}. Since −2 ≡ 5 (mod 7) and −1 ≡ 6
(mod 7), we showed that x3 + y3 ≡ t (mod 7) for some t ∈ {0, 1, 2, 5, 6}. In
particular, x3 + y3 6≡ 4 (mod 7), so x3 + y3 6= 7777781.

Problem 5

Let m be a natural number greater than 1. Suppose that m has the property
that whenever m divides the product ab of two natural numbers a, b, then
either m divides a or m divides b. Prove that m is a prime number.

Solution

Equivalently, we need to show that if m is not prime, then there exist natural
numbers a, b such that m divides ab but m does not divide a nor b. Since
m is not prime, there exists a, b ∈ N such that m = ab and 1 < a < m,
1 < b < m. Then, m divides ab, but m does not divide a nor b.
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Problem 6

Let a and b be natural numbers whose prime factorizations have no primes
in common. Use the Fundamental Theorem of Arithmetic to show that if a
and b divide a natural number m, then ab divides m.

Solution

By assumption, we can write a = p1 · · · pu and b = q1 · · · qv, where pi, qi are
primes such that pi 6= qj for all i, j. Suppose that a and b divide m. Then,
m = ka and m = lb for some k, l ∈ N. Write m = r1 · · · rw for some primes
ri. Then,

m = r1 · · · rw = p1 · · · puk = q1 · · · qvl

and, after expanding k and l as products of primes, this gives three prime
factorizations of m. By the Fundamental Theorem of Arithmetic, those prime
factorizations are the same after reordering. Hence, since pi 6= qj for all i, j,
we can reorder r1, . . . , rw such that

r1 = p1, r2 = p2, . . . , ru = pu,

ru+1 = q1, ru+2 = q2, . . . , ru+v = qv.

Then, m = p1 · · · pu · q1 · · · qv · ru+v+1 · · · rw = ab · ru+v+1 · · · rw, so ab | m.

Problem 7

Find all primes p ≥ 5 such that 6p · (p− 4)! + 103p is divisible by p.

Hint: Use Fermat’s Little Theorem and Wilson’s Theorem.

Solution

Let p ≥ 5 be prime. By Wilson’s Theorem, (p− 1)! ≡ −1 (mod p). Since

(p− 1)! = (p− 1) · (p− 2) · (p− 3) · (p− 4)!

and p ≡ 0 (mod p), we get

−1 ≡ (−1) · (−2) · (−3) · (p− 4)! (mod p)
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so
6 · (p− 4)! ≡ 1 (mod p).

Now, by Fermat’s Little Theorem, 6p ≡ 6 (mod p) and 103p = 1000p ≡ 1000
(mod p), so

6p · (p− 4)! + 103p ≡ 6 · (p− 4)! + 1000 (mod p)

≡ 1001 (mod p).

Then, p | 6p · (p− 4)! + 103p if and only if 6p · (p− 4)! + 103p ≡ 0 (mod p) if
and only if 1001 ≡ 0 (mod p) if and only if p | 1001. The prime factorization
of 1001 is 7 · 11 · 13, so p | 1001 if and only if p ∈ {7, 11, 13}.

Thus, if p ≥ 5 is prime, then 6p · (p − 4)! + 103p is divisible by p if and
only if p = 7, p = 11, or p = 13.
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