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Problem 1

The goal of this exercise is to prove the following theorem in several steps.

Theorem. Let m and n be natural numbers. Then, there exist unique inte-
gers q and r such thatn =qgm +1r and 0 <r < m.

Recall that q is called the quotient and r the remainder of the division of
n by m.

(a)
(b)

(c)
(d)

Let a,b € Z with 0 < a < b. Prove that b divides a if and only if a = 0.

Use part (a) to prove the uniqueness part of the theorem. That is,
show that if there are two pairs q;,71 € Z and ¢q,r9 € Z satisfying
n=qgm+7r,0<r  <m,and n=gm-+ry, 0 <ry <m,then ¢ = ¢
and r{ = ra.

Prove that there exist such ¢ and r when m divides n.

Prove that there exist such ¢ and r when m does not divide n by
applying the well-ordering principle to the set

S ={reN:r=mn-—gm for some q € Z}.

Solution

(a)

If a = 0 then a = kb with k = 0, so b divides a. Conversely, suppose
that b divides a. Then, a = bk for some k € Z. Note that k > 0 since
a>0and b> 0. But also bk =a <band b > 0so k£ < 1 and hence
k=0. Thus,a=0-b=0.

Without loss of generality, we may assume that r; < ry. We have
n=qm+r = gm+ry, 80 (1 —qa)m = r9 — 1. In particular, m
divides ro — 1. Moreover, 0 < ry —r; < 1y < m, so, by applying (a)
with a = ro —r; and b = m, we get ro —r; = 0, and hence r; = rs.
Now, (q1 — ga)m = ry — r; = 0, and since m # 0, this implies that
@1 —q2=10,50 q1 = qa.



(c¢) By definition, n = km for some k € Z, so we can take ¢ = k and r = 0.

(d) Note that n =n—0-m € S, so S is not empty. By the Well-Ordering
Principle, S has a smallest element r, which is of the form » =n — gm
for some ¢ € Z. Then, n = gm + r and, since r € N, we have 0 < r,
so the only thing left to show is that » < m. First note that » # m
as otherwise n = mq +m = (¢ + 1)m, so m divides n. If r > m, then
r=m+t for somet > 0. Then,t e Nandt =r —m=n— (¢ + 1)m,
sot € S and t < r, contradicting that r is the smallest element of S.
Thus, r < m.

Problem 2

Prove that the Principle of Complete Mathematical Induction is equivalent
to the Well-Ordering Principle.

That is, first prove the Well-Ordering Principle using the Principle of
Complete Mathematical Induction, and then prove the Principle of Complete
Mathematical Induction using the Well-Ordering Principle.

Solution

Proof of the Well-Ordering Principle using the Principle of Com-
plete Mathematical Induction. We need to show that every non-empty
subset of the set of natural numbers has a smallest element. Equivalently, we
show that if T' C N is a subset of the set of natural numbers with no smallest
element, then 7' is empty.

Let S be the complement of T in N, i.e.

S={neN:n¢T}.

We use the Principle of Complete Mathematical Induction to show that S =
N and hence T is empty.

(A) We need to show that 1 € S, i.e. that 1 ¢ T. But if 1 € T, then 1
would be a smallest element of T" since every element ¢ € T is in N so
t>1. Hence, 1 ¢ T, s01 € S.

(B) Suppose that k£ € N is such that {1,2,3,...,k} € S. We need to show
that £ +1 € S. By assumption, all the numbers 1,2,3,...,k are not
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in T. Hence, if k+1 € T, then k+ 1 would be a smallest element of T’
since every element ¢t € T' is a natural number other than 1,2,3,...,k,
sot>k+1. Thus,k+1¢Tsok+1€S.

By the Principle of Mathematical Induction, S = N, so T is empty.

Proof of the Principle of Complete Mathematical Induction using
the Well-Ordering Principle. Let S C N be such that

(A) 1€8
(B) If k € N is such that {1,2,3,...,k} C Sthen k+ 1€ S.
We need to show that S = N. Let T" be the complement of S in N, i.e.
T'={neN:n¢S}.

We need to show that 7" is empty. By the Well-Ordering Principle, it suffices
to show that T" has no smallest element. Suppose, by contradiction, that T’
has a smallest element ¢ € T. By (A) we have 1 € S, so 1 ¢ T, and hence
t > 1. Thus, t = k + 1 for some k € N. Moreover, since t is the smallest
element of T', all natural numbers smaller than ¢ are not in 7" and hence
they are elements of S, ie. {1,2,3,...,k} C S. By (B), this implies that
k+1e€S Butk+1l=teTsok+1¢.S and we get a contradiction.
Therefore, T" has no smallest element, so T is empty by the Well-Ordering
Principle, and hence S = N.

Problem 3

Prove that 172" + 42" 4 93%"*! is divisible by 19 for every natural number n.

Solution
We have 17 = —2 (mod 19), 42 =4 (mod 19), and 93 = —2 (mod 19), so

172" 4+ 42" + 932" = (=2)?" + 4" + (=2)*"" (mod 19).

But

so 172" + 42" + 93?71 = () (mod 19) for every n € N.
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Problem 4

Prove that there are no solutions to the equation x® + y3 = 7777781 such
that both x and y are integers.

Solution
Note that 7777781 = 7 - 1111111 + 4, so
7777781 =4 (mod 7)

Hence, it suffices to show that if z,y € Z, then 2® + y> # 4 (mod 7). We
have

0= 0 (mod7)
= 1 (mod?7)
2°= 1 (mod 7)
33=-1 (mod 7)
4= 1 (mod7)
5=—1 (mod 7)

6°=—1 (mod 7),

so ¥+ 4> =r+ s (mod 7) for some r,s € {—1,0,1}. Thus, 2* +y> = ¢
(mod 7), for some t € {—2,—1,0,1,2}. Since —2 =5 (mod 7) and —1 =6
(mod 7), we showed that 2® +4®> = ¢ (mod 7) for some t € {0,1,2,5,6}. In
particular, 23 4+ y3 # 4 (mod 7), so x3 + y* # T777781.

Problem 5

Let m be a natural number greater than 1. Suppose that m has the property
that whenever m divides the product ab of two natural numbers a, b, then
either m divides a or m divides b. Prove that m is a prime number.

Solution

Equivalently, we need to show that if m is not prime, then there exist natural
numbers a, b such that m divides ab but m does not divide a nor b. Since
m is not prime, there exists a,b € N such that m = ab and 1 < a < m,
1 < b < m. Then, m divides ab, but m does not divide a nor b.
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Problem 6

Let a and b be natural numbers whose prime factorizations have no primes
in common. Use the Fundamental Theorem of Arithmetic to show that if a
and b divide a natural number m, then ab divides m.

Solution

By assumption, we can write a = py---p, and b = ¢y - - - q,, Where p;, q; are
primes such that p; # ¢; for all 4, j. Suppose that a and b divide m. Then,
m = ka and m = [b for some k,l € N. Write m = ry---r, for some primes
r;. Then,

M=T1 Ty =P Pub = G- ol

and, after expanding k& and [ as products of primes, this gives three prime
factorizations of m. By the Fundamental Theorem of Arithmetic, those prime
factorizations are the same after reordering. Hence, since p; # ¢; for all i, j,
we can reorder ry, ..., 7, such that

™ = P1, T2 = P2, LRI Ty = Pu,

Tur1 = q1, Tut2 = (2, ceey Tyugo = Qo

Then, m=p1- Dy @1 Qo Tutvtl " Tw = a0 Tyjpi1 - Top, SO ab | m.

Problem 7

Find all primes p > 5 such that 67 - (p — 4)! + 10° is divisible by p.
Hint: Use Fermat’s Little Theorem and Wilson’s Theorem.

Solution

Let p > 5 be prime. By Wilson’s Theorem, (p — 1)! = —1 (mod p). Since
p-D=p@E-1)-p-2)-(p-3) - (p—4)!

and p =0 (mod p), we get
—1=(=1)-(=2)-(=3)-(p—4)! (mod p)
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6-(p—4)!'=1 (mod p).

Now, by Fermat’s Little Theorem, 6 = 6 (mod p) and 10%" = 1000 = 1000
(mod p), so

6 (p— 4!+ 10" =6-(p—4)! +1000 (mod p)
= 1001 (mod p).

Then, p | 67 - (p — 4)! + 10° if and only if 67 - (p — 4)! + 10%? = 0 (mod p) if
and only if 1001 = 0 (mod p) if and only if p | 1001. The prime factorization
of 1001 is 7-11- 13, so p | 1001 if and only if p € {7,11,13}.

Thus, if p > 5 is prime, then 67 - (p — 4)! + 10° is divisible by p if and
onlyifp=7p=11, or p=13.



