Problem Set 1 - Solutions Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Problem 1

The goal of this exercise is to prove the following theorem in several steps.
Theorem. Let m and n be natural numbers. Then, there exist unique integers q and r such that $n=q m+r$ and $0 \leq r<m$.

Recall that q is called the quotient and r the remainder of the division of n by m.
(a) Let $a, b \in \mathbb{Z}$ with $0 \leq a<b$. Prove that b divides a if and only if $a=0$.
(b) Use part (a) to prove the uniqueness part of the theorem. That is, show that if there are two pairs $q_{1}, r_{1} \in \mathbb{Z}$ and $q_{2}, r_{2} \in \mathbb{Z}$ satisfying $n=q_{1} m+r_{1}, 0 \leq r_{1}<m$, and $n=q_{2} m+r_{2}, 0 \leq r_{2}<m$, then $q_{1}=q_{2}$ and $r_{1}=r_{2}$.
(c) Prove that there exist such q and r when m divides n.
(d) Prove that there exist such q and r when m does not divide n by applying the well-ordering principle to the set

$$
S=\{r \in \mathbb{N}: r=n-q m \text { for some } q \in \mathbb{Z}\}
$$

Solution

(a) If $a=0$ then $a=k b$ with $k=0$, so b divides a. Conversely, suppose that b divides a. Then, $a=b k$ for some $k \in \mathbb{Z}$. Note that $k \geq 0$ since $a \geq 0$ and $b>0$. But also $b k=a<b$ and $b>0$ so $k<1$ and hence $k=0$. Thus, $a=0 \cdot b=0$.
(b) Without loss of generality, we may assume that $r_{1} \leq r_{2}$. We have $n=q_{1} m+r_{1}=q_{2} m+r_{2}$, so $\left(q_{1}-q_{2}\right) m=r_{2}-r_{1}$. In particular, m divides $r_{2}-r_{1}$. Moreover, $0 \leq r_{2}-r_{1} \leq r_{2}<m$, so, by applying (a) with $a=r_{2}-r_{1}$ and $b=m$, we get $r_{2}-r_{1}=0$, and hence $r_{1}=r_{2}$. Now, $\left(q_{1}-q_{2}\right) m=r_{2}-r_{1}=0$, and since $m \neq 0$, this implies that $q_{1}-q_{2}=0$, so $q_{1}=q_{2}$.
(c) By definition, $n=k m$ for some $k \in \mathbb{Z}$, so we can take $q=k$ and $r=0$.
(d) Note that $n=n-0 \cdot m \in S$, so S is not empty. By the Well-Ordering Principle, S has a smallest element r, which is of the form $r=n-q m$ for some $q \in \mathbb{Z}$. Then, $n=q m+r$ and, since $r \in \mathbb{N}$, we have $0 \leq r$, so the only thing left to show is that $r<m$. First note that $r \neq m$ as otherwise $n=m q+m=(q+1) m$, so m divides n. If $r>m$, then $r=m+t$ for some $t>0$. Then, $t \in \mathbb{N}$ and $t=r-m=n-(q+1) m$, so $t \in S$ and $t<r$, contradicting that r is the smallest element of S. Thus, $r<m$.

Problem 2

Prove that the Principle of Complete Mathematical Induction is equivalent to the Well-Ordering Principle.

That is, first prove the Well-Ordering Principle using the Principle of Complete Mathematical Induction, and then prove the Principle of Complete Mathematical Induction using the Well-Ordering Principle.

Solution

Proof of the Well-Ordering Principle using the Principle of Complete Mathematical Induction. We need to show that every non-empty subset of the set of natural numbers has a smallest element. Equivalently, we show that if $T \subseteq \mathbb{N}$ is a subset of the set of natural numbers with no smallest element, then T is empty.

Let S be the complement of T in \mathbb{N}, i.e.

$$
S=\{n \in \mathbb{N}: n \notin T\}
$$

We use the Principle of Complete Mathematical Induction to show that $S=$ \mathbb{N} and hence T is empty.
(A) We need to show that $1 \in S$, i.e. that $1 \notin T$. But if $1 \in T$, then 1 would be a smallest element of T since every element $t \in T$ is in \mathbb{N} so $t \geq 1$. Hence, $1 \notin T$, so $1 \in S$.
(B) Suppose that $k \in \mathbb{N}$ is such that $\{1,2,3, \ldots, k\} \subseteq S$. We need to show that $k+1 \in S$. By assumption, all the numbers $1,2,3, \ldots, k$ are not
in T. Hence, if $k+1 \in T$, then $k+1$ would be a smallest element of T since every element $t \in T$ is a natural number other than $1,2,3, \ldots, k$, so $t \geq k+1$. Thus, $k+1 \notin T$ so $k+1 \in S$.

By the Principle of Mathematical Induction, $S=\mathbb{N}$, so T is empty.

Proof of the Principle of Complete Mathematical Induction using

 the Well-Ordering Principle. Let $S \subseteq \mathbb{N}$ be such that(A) $1 \in S$
(B) If $k \in \mathbb{N}$ is such that $\{1,2,3, \ldots, k\} \subseteq S$ then $k+1 \in S$.

We need to show that $S=\mathbb{N}$. Let T be the complement of S in \mathbb{N}, i.e.

$$
T=\{n \in \mathbb{N}: n \notin S\}
$$

We need to show that T is empty. By the Well-Ordering Principle, it suffices to show that T has no smallest element. Suppose, by contradiction, that T has a smallest element $t \in T$. By (A) we have $1 \in S$, so $1 \notin T$, and hence $t>1$. Thus, $t=k+1$ for some $k \in \mathbb{N}$. Moreover, since t is the smallest element of T, all natural numbers smaller than t are not in T and hence they are elements of S, i.e. $\{1,2,3, \ldots, k\} \subseteq S$. By (B), this implies that $k+1 \in S$. But $k+1=t \in T$ so $k+1 \notin S$ and we get a contradiction. Therefore, T has no smallest element, so T is empty by the Well-Ordering Principle, and hence $S=\mathbb{N}$.

Problem 3

Prove that $17^{2 n}+42^{n}+93^{2 n+1}$ is divisible by 19 for every natural number n.

Solution

We have $17 \equiv-2(\bmod 19), 42 \equiv 4(\bmod 19)$, and $93 \equiv-2(\bmod 19)$, so

$$
17^{2 n}+42^{n}+93^{2 n+1} \equiv(-2)^{2 n}+4^{n}+(-2)^{2 n+1} \quad(\bmod 19)
$$

But

$$
(-2)^{2 n}+4^{n}+(-2)^{2 n+1}=4^{n}+4^{n}-2 \cdot 4^{n}=0
$$

so $17^{2 n}+42^{n}+93^{2 n+1} \equiv 0(\bmod 19)$ for every $n \in \mathbb{N}$.

Problem 4

Prove that there are no solutions to the equation $x^{3}+y^{3}=7777781$ such that both x and y are integers.

Solution

Note that $7777781=7 \cdot 1111111+4$, so

$$
7777781 \equiv 4 \quad(\bmod 7)
$$

Hence, it suffices to show that if $x, y \in \mathbb{Z}$, then $x^{3}+y^{3} \not \equiv 4(\bmod 7)$. We have

$$
\begin{array}{ll}
0^{3} \equiv 0 & (\bmod 7) \\
1^{3} \equiv 1 & (\bmod 7) \\
2^{3} \equiv 1 & (\bmod 7) \\
3^{3} \equiv-1 & (\bmod 7) \\
4^{3} \equiv 1 & (\bmod 7) \\
5^{3} \equiv-1 & (\bmod 7) \\
6^{3} \equiv-1 & (\bmod 7),
\end{array}
$$

so $x^{3}+y^{3} \equiv r+s(\bmod 7)$ for some $r, s \in\{-1,0,1\}$. Thus, $x^{3}+y^{3} \equiv t$ $(\bmod 7)$, for some $t \in\{-2,-1,0,1,2\}$. Since $-2 \equiv 5(\bmod 7)$ and $-1 \equiv 6$ $(\bmod 7)$, we showed that $x^{3}+y^{3} \equiv t(\bmod 7)$ for some $t \in\{0,1,2,5,6\}$. In particular, $x^{3}+y^{3} \not \equiv 4(\bmod 7)$, so $x^{3}+y^{3} \neq 7777781$.

Problem 5

Let m be a natural number greater than 1 . Suppose that m has the property that whenever m divides the product $a b$ of two natural numbers a, b, then either m divides a or m divides b. Prove that m is a prime number.

Solution

Equivalently, we need to show that if m is not prime, then there exist natural numbers a, b such that m divides $a b$ but m does not divide a nor b. Since m is not prime, there exists $a, b \in \mathbb{N}$ such that $m=a b$ and $1<a<m$, $1<b<m$. Then, m divides $a b$, but m does not divide a nor b.

Problem 6

Let a and b be natural numbers whose prime factorizations have no primes in common. Use the Fundamental Theorem of Arithmetic to show that if a and b divide a natural number m, then $a b$ divides m.

Solution

By assumption, we can write $a=p_{1} \cdots p_{u}$ and $b=q_{1} \cdots q_{v}$, where p_{i}, q_{i} are primes such that $p_{i} \neq q_{j}$ for all i, j. Suppose that a and b divide m. Then, $m=k a$ and $m=l b$ for some $k, l \in \mathbb{N}$. Write $m=r_{1} \cdots r_{w}$ for some primes r_{i}. Then,

$$
m=r_{1} \cdots r_{w}=p_{1} \cdots p_{u} k=q_{1} \cdots q_{v} l
$$

and, after expanding k and l as products of primes, this gives three prime factorizations of m. By the Fundamental Theorem of Arithmetic, those prime factorizations are the same after reordering. Hence, since $p_{i} \neq q_{j}$ for all i, j, we can reorder r_{1}, \ldots, r_{w} such that

$$
\begin{aligned}
r_{1} & =p_{1}, & r_{2} & =p_{2}, & \ldots, & r_{u}
\end{aligned}=p_{u}, ~ 子, ~ r_{u+v}=q_{v} .
$$

Then, $m=p_{1} \cdots p_{u} \cdot q_{1} \cdots q_{v} \cdot r_{u+v+1} \cdots r_{w}=a b \cdot r_{u+v+1} \cdots r_{w}$, so $a b \mid m$.

Problem 7

Find all primes $p \geq 5$ such that $6^{p} \cdot(p-4)!+10^{3 p}$ is divisible by p.
Hint: Use Fermat's Little Theorem and Wilson's Theorem.

Solution

Let $p \geq 5$ be prime. By Wilson's Theorem, $(p-1)!\equiv-1(\bmod p)$. Since

$$
(p-1)!=(p-1) \cdot(p-2) \cdot(p-3) \cdot(p-4)!
$$

and $p \equiv 0(\bmod p)$, we get

$$
-1 \equiv(-1) \cdot(-2) \cdot(-3) \cdot(p-4)!\quad(\bmod p)
$$

so

$$
6 \cdot(p-4)!\equiv 1 \quad(\bmod p)
$$

Now, by Fermat's Little Theorem, $6^{p} \equiv 6(\bmod p)$ and $10^{3 p}=1000^{p} \equiv 1000$ $(\bmod p)$, so

$$
\begin{aligned}
6^{p} \cdot(p-4)!+10^{3 p} & \equiv 6 \cdot(p-4)!+1000 \quad(\bmod p) \\
& \equiv 1001 \quad(\bmod p)
\end{aligned}
$$

Then, $p \mid 6^{p} \cdot(p-4)!+10^{3 p}$ if and only if $6^{p} \cdot(p-4)!+10^{3 p} \equiv 0(\bmod p)$ if and only if $1001 \equiv 0(\bmod p)$ if and only if $p \mid 1001$. The prime factorization of 1001 is $7 \cdot 11 \cdot 13$, so $p \mid 1001$ if and only if $p \in\{7,11,13\}$.

Thus, if $p \geq 5$ is prime, then $6^{p} \cdot(p-4)!+10^{3 p}$ is divisible by p if and only if $p=7, p=11$, or $p=13$.

