Problem Set 1 – Solutions Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Problem 1

The goal of this exercise is to prove the following theorem in several steps.

Theorem. Let m and n be natural numbers. Then, there exist unique integers q and r such that n = qm + r and $0 \le r < m$.

Recall that q is called the *quotient* and r the *remainder* of the division of n by m.

- (a) Let $a, b \in \mathbb{Z}$ with $0 \le a < b$. Prove that b divides a if and only if a = 0.
- (b) Use part (a) to prove the uniqueness part of the theorem. That is, show that if there are two pairs $q_1, r_1 \in \mathbb{Z}$ and $q_2, r_2 \in \mathbb{Z}$ satisfying $n = q_1m + r_1, 0 \leq r_1 < m$, and $n = q_2m + r_2, 0 \leq r_2 < m$, then $q_1 = q_2$ and $r_1 = r_2$.
- (c) Prove that there exist such q and r when m divides n.
- (d) Prove that there exist such q and r when m does not divide n by applying the well-ordering principle to the set

$$S = \{ r \in \mathbb{N} : r = n - qm \text{ for some } q \in \mathbb{Z} \}.$$

Solution

- (a) If a = 0 then a = kb with k = 0, so b divides a. Conversely, suppose that b divides a. Then, a = bk for some $k \in \mathbb{Z}$. Note that $k \ge 0$ since $a \ge 0$ and b > 0. But also bk = a < b and b > 0 so k < 1 and hence k = 0. Thus, $a = 0 \cdot b = 0$.
- (b) Without loss of generality, we may assume that $r_1 \leq r_2$. We have $n = q_1m + r_1 = q_2m + r_2$, so $(q_1 q_2)m = r_2 r_1$. In particular, m divides $r_2 r_1$. Moreover, $0 \leq r_2 r_1 \leq r_2 < m$, so, by applying (a) with $a = r_2 r_1$ and b = m, we get $r_2 r_1 = 0$, and hence $r_1 = r_2$. Now, $(q_1 q_2)m = r_2 r_1 = 0$, and since $m \neq 0$, this implies that $q_1 q_2 = 0$, so $q_1 = q_2$.

- (c) By definition, n = km for some $k \in \mathbb{Z}$, so we can take q = k and r = 0.
- (d) Note that $n = n 0 \cdot m \in S$, so S is not empty. By the Well-Ordering Principle, S has a smallest element r, which is of the form r = n - qmfor some $q \in \mathbb{Z}$. Then, n = qm + r and, since $r \in \mathbb{N}$, we have $0 \leq r$, so the only thing left to show is that r < m. First note that $r \neq m$ as otherwise n = mq + m = (q + 1)m, so m divides n. If r > m, then r = m + t for some t > 0. Then, $t \in \mathbb{N}$ and t = r - m = n - (q + 1)m, so $t \in S$ and t < r, contradicting that r is the smallest element of S. Thus, r < m.

Problem 2

Prove that the Principle of Complete Mathematical Induction is equivalent to the Well-Ordering Principle.

That is, first prove the Well-Ordering Principle using the Principle of Complete Mathematical Induction, and then prove the Principle of Complete Mathematical Induction using the Well-Ordering Principle.

Solution

Proof of the Well-Ordering Principle using the Principle of Complete Mathematical Induction. We need to show that every non-empty subset of the set of natural numbers has a smallest element. Equivalently, we show that if $T \subseteq \mathbb{N}$ is a subset of the set of natural numbers with no smallest element, then T is empty.

Let S be the complement of T in \mathbb{N} , i.e.

$$S = \{ n \in \mathbb{N} : n \notin T \}.$$

We use the Principle of Complete Mathematical Induction to show that $S = \mathbb{N}$ and hence T is empty.

- (A) We need to show that $1 \in S$, i.e. that $1 \notin T$. But if $1 \in T$, then 1 would be a smallest element of T since every element $t \in T$ is in \mathbb{N} so $t \geq 1$. Hence, $1 \notin T$, so $1 \in S$.
- (B) Suppose that $k \in \mathbb{N}$ is such that $\{1, 2, 3, \dots, k\} \subseteq S$. We need to show that $k + 1 \in S$. By assumption, all the numbers $1, 2, 3, \dots, k$ are not

in T. Hence, if $k + 1 \in T$, then k + 1 would be a smallest element of T since every element $t \in T$ is a natural number other than $1, 2, 3, \ldots, k$, so $t \ge k + 1$. Thus, $k + 1 \notin T$ so $k + 1 \in S$.

By the Principle of Mathematical Induction, $S = \mathbb{N}$, so T is empty.

Proof of the Principle of Complete Mathematical Induction using the Well-Ordering Principle. Let $S \subseteq \mathbb{N}$ be such that

- (A) $1 \in S$
- (B) If $k \in \mathbb{N}$ is such that $\{1, 2, 3, \dots, k\} \subseteq S$ then $k + 1 \in S$.

We need to show that $S = \mathbb{N}$. Let T be the complement of S in \mathbb{N} , i.e.

$$T = \{ n \in \mathbb{N} : n \notin S \}.$$

We need to show that T is empty. By the Well-Ordering Principle, it suffices to show that T has no smallest element. Suppose, by contradiction, that Thas a smallest element $t \in T$. By (A) we have $1 \in S$, so $1 \notin T$, and hence t > 1. Thus, t = k + 1 for some $k \in \mathbb{N}$. Moreover, since t is the smallest element of T, all natural numbers smaller than t are not in T and hence they are elements of S, i.e. $\{1, 2, 3, \ldots, k\} \subseteq S$. By (B), this implies that $k + 1 \in S$. But $k + 1 = t \in T$ so $k + 1 \notin S$ and we get a contradiction. Therefore, T has no smallest element, so T is empty by the Well-Ordering Principle, and hence $S = \mathbb{N}$.

Problem 3

Prove that $17^{2n} + 42^n + 93^{2n+1}$ is divisible by 19 for every natural number n.

Solution

We have $17 \equiv -2 \pmod{19}$, $42 \equiv 4 \pmod{19}$, and $93 \equiv -2 \pmod{19}$, so

$$17^{2n} + 42^n + 93^{2n+1} \equiv (-2)^{2n} + 4^n + (-2)^{2n+1} \pmod{19}.$$

But

$$(-2)^{2n} + 4^n + (-2)^{2n+1} = 4^n + 4^n - 2 \cdot 4^n = 0$$

so $17^{2n} + 42^n + 93^{2n+1} \equiv 0 \pmod{19}$ for every $n \in \mathbb{N}$.

Problem 4

Prove that there are no solutions to the equation $x^3 + y^3 = 7777781$ such that both x and y are integers.

Solution

Note that $7777781 = 7 \cdot 1111111 + 4$, so

 $7777781 \equiv 4 \pmod{7}$

Hence, it suffices to show that if $x, y \in \mathbb{Z}$, then $x^3 + y^3 \not\equiv 4 \pmod{7}$. We have

so $x^3 + y^3 \equiv r + s \pmod{7}$ for some $r, s \in \{-1, 0, 1\}$. Thus, $x^3 + y^3 \equiv t \pmod{7}$, for some $t \in \{-2, -1, 0, 1, 2\}$. Since $-2 \equiv 5 \pmod{7}$ and $-1 \equiv 6 \pmod{7}$, we showed that $x^3 + y^3 \equiv t \pmod{7}$ for some $t \in \{0, 1, 2, 5, 6\}$. In particular, $x^3 + y^3 \not\equiv 4 \pmod{7}$, so $x^3 + y^3 \not\equiv 777781$.

Problem 5

Let m be a natural number greater than 1. Suppose that m has the property that whenever m divides the product ab of two natural numbers a, b, then either m divides a or m divides b. Prove that m is a prime number.

Solution

Equivalently, we need to show that if m is not prime, then there exist natural numbers a, b such that m divides ab but m does not divide a nor b. Since m is not prime, there exists $a, b \in \mathbb{N}$ such that m = ab and 1 < a < m, 1 < b < m. Then, m divides ab, but m does not divide a nor b.

Problem 6

Let a and b be natural numbers whose prime factorizations have no primes in common. Use the Fundamental Theorem of Arithmetic to show that if aand b divide a natural number m, then ab divides m.

Solution

By assumption, we can write $a = p_1 \cdots p_u$ and $b = q_1 \cdots q_v$, where p_i, q_i are primes such that $p_i \neq q_j$ for all i, j. Suppose that a and b divide m. Then, m = ka and m = lb for some $k, l \in \mathbb{N}$. Write $m = r_1 \cdots r_w$ for some primes r_i . Then,

$$m = r_1 \cdots r_w = p_1 \cdots p_u k = q_1 \cdots q_v l$$

and, after expanding k and l as products of primes, this gives three prime factorizations of m. By the Fundamental Theorem of Arithmetic, those prime factorizations are the same after reordering. Hence, since $p_i \neq q_j$ for all i, j, we can reorder r_1, \ldots, r_w such that

$$r_1 = p_1, \quad r_2 = p_2, \quad \dots, \quad r_u = p_u,$$

 $r_{u+1} = q_1, \quad r_{u+2} = q_2, \quad \dots, \quad r_{u+v} = q_v.$

Then, $m = p_1 \cdots p_u \cdot q_1 \cdots q_v \cdot r_{u+v+1} \cdots r_w = ab \cdot r_{u+v+1} \cdots r_w$, so $ab \mid m$.

Problem 7

Find all primes $p \ge 5$ such that $6^p \cdot (p-4)! + 10^{3p}$ is divisible by p.

Hint: Use Fermat's Little Theorem and Wilson's Theorem.

Solution

Let $p \ge 5$ be prime. By Wilson's Theorem, $(p-1)! \equiv -1 \pmod{p}$. Since

$$(p-1)! = (p-1) \cdot (p-2) \cdot (p-3) \cdot (p-4)!$$

and $p \equiv 0 \pmod{p}$, we get

 $-1 \equiv (-1) \cdot (-2) \cdot (-3) \cdot (p-4)! \pmod{p}$

$$6 \cdot (p-4)! \equiv 1 \pmod{p}.$$

Now, by Fermat's Little Theorem, $6^p \equiv 6 \pmod{p}$ and $10^{3p} = 1000^p \equiv 1000 \pmod{p}$, so

$$6^{p} \cdot (p-4)! + 10^{3p} \equiv 6 \cdot (p-4)! + 1000 \pmod{p}$$

$$\equiv 1001 \pmod{p}.$$

Then, $p \mid 6^p \cdot (p-4)! + 10^{3p}$ if and only if $6^p \cdot (p-4)! + 10^{3p} \equiv 0 \pmod{p}$ if and only if $1001 \equiv 0 \pmod{p}$ if and only if $p \mid 1001$. The prime factorization of 1001 is $7 \cdot 11 \cdot 13$, so $p \mid 1001$ if and only if $p \in \{7, 11, 13\}$.

Thus, if $p \ge 5$ is prime, then $6^p \cdot (p-4)! + 10^{3p}$ is divisible by p if and only if p = 7, p = 11, or p = 13.

 \mathbf{SO}