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Problem Set 2
Solutions

1. (a) Let a and b be relatively prime natural numbers greater than or equal to 2. Prove
that aφ(b) + bφ(a) ≡ 1 (mod ab).

(b) Find the remainder when 47144 + 18546 · (46! + 2)46 is divided by 8695.

Solution.

(a) Since a and b are relatively prime, Euler’s Theorem implies that aφ(b) ≡ 1 (mod b)
and bφ(a) ≡ 1 (mod a). Thus, b | aφ(b) − 1 and a | bφ(a) − 1, so

ab | (aφ(b) − 1)(bφ(a) − 1),

which means that (aφ(b) − 1)(bφ(a) − 1) ≡ 0 (mod ab). Hence, expanding the
left-hand side, we get

aφ(b)bφ(a) − aφ(b) − bφ(a) + 1 ≡ 0 (mod ab).

Since a, b ≥ 2, we have φ(a), φ(b) ≥ 1, so ab | aφ(b)bφ(a) and hence aφ(b)bφ(a) ≡ 0
(mod ab). Thus, we get 0 − aφ(b) − bφ(a) + 1 ≡ 0 (mod ab), so aφ(b) + bφ(a) ≡ 1
(mod ab).

(b) Let a = 47 and b = 185 = 5 · 37 so that ab = 8695. Since for any primes p, q,
we have φ(p) = p − 1 and φ(pq) = (p − 1)(q − 1), we get that φ(a) = 46 and
φ(b) = 4 · 36 = 144. Moreover, the canonical factorizations into primes of a and
b are a = 47 and b = 5 · 37, so they have no prime factor in common, and hence
they are relatively prime. Thus, 47144 + 18546 ≡ 1 (mod 8695) by part (a).

Now, a is prime so a | (a− 1)! + 1 by Wilson’s Theorem, and hence

ab | b · ((a− 1)! + 1).

In other words, 185 · (46! + 1) ≡ 0 (mod 8695), so

185 · (46! + 2) ≡ 185 · (46! + 1) + 185 ≡ 185 (mod 8695).

Hence,

47144+18546·(46!+2)46 = 47144+
(
185·(46!+2)

)46 ≡ 47144+18546 ≡ 1 (mod 8695),

so the remainder is 1.
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2. (a) Let p and q be primes. Prove that
√
pq is rational if and only if p = q.

(b) Prove that
√

57 +
√
n is irrational for all n ∈ N.

Solution.

(a) If p = q then
√
pq =

√
p2 = p is rational. For the converse, we give two different

proofs.

Proof 1. Suppose, by contradiction, that p 6= q and
√
pq = a

b
for some relatively

prime numbers a, b ∈ N. Then, pqb2 = a2, so p | a2 and, since p is prime, this
implies that p | a (Lemma 7.2.2). Similarly, q | a2, so q | a. Since p and q are
distinct primes, they are relatively prime, so pq | a (this was proved in Lecture
7 and is also a special case Q6 in PS1). Hence, a = pqk for some k ∈ N, so
pqb2 = a2 = p2q2k2 and hence b2 = pqk2. Repeating the same argument, we get
that p | b and q | b so pq | b. Hence, pq | a and pq | b contradicting that a and b
are relatively prime.

Proof 2. Suppose that
√
pq is rational. Since the square root of a natural number

is rational only if the square root is a natural number (Theorem 8.2.8), we have√
pq = n for some n ∈ N. Hence, pq = n2. Let n = rα1

1 · · · r
αk
k be the canonical

factorization of n, so that pq = r2α1
1 · · · r2αk

k . Then, we must have that p = q, as
otherwise, we get two canonical factorizations of the same number, where all the
exponents of the first one (i.e. pq) are 1 while all the exponents of the second one
(i.e. r2α1

1 · · · r2αk
k ) are even, contradicting uniqueness of canonical factorizations.

(b) Note that 57 = 3 · 19 is the product of two distinct primes. (Side note: although
57 is not prime, it is often jokingly called the Grothendieck prime.) Hence,

√
57

is irrational by (a). Suppose, by contradiction, that
√
n +
√

57 = r ∈ Q. Then,√
n = r−

√
57, so n = (r−

√
57)2 = r2−2r

√
57+57 and hence

√
57 = r2+57−n

2r
∈ Q,

contradicting that
√

57 is irrational. Hence,
√
n+
√

57 is irrational.
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3. (a) Prove that if z, w ∈ C then z + w = z̄ + w̄.

(b) Prove that if z, w ∈ C then zw = z̄w̄.

(c) Prove that if r ∈ C is a root of a polynomial with real coefficients, then r̄ is also
a root of that polynomial.

Solution.

(a) Let z = a+ bi and w = c+ di, where a, b, c, d ∈ R. Then,

z + w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= z̄ + w̄.

(b) Let z = a+ bi and w = c+ di, where a, b, c, d ∈ R. Then,

zw = (a+ bi)(c+ di)

= (ac− bd) + (ad+ bc)i

= (ac− bd)− (ad+ bc)i

= (ac− (−b)(−d)) + (a(−d) + (−b)c)i
= (a− bi)(c− di)
= z̄w̄.

(c) Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a polynomial with an ∈ R and
let r ∈ C be a root of p(z), i.e. p(r) = 0. We want to show that p(r̄) = 0. By
(a), we have a1z + a0 = a1z + a0. Applying (a) again, we get a2z2 + a1z + a0 =
a2z2 + a1z + a0 = a2z2 + a1z + a0. Hence, applying (a) n times, we get

anzn + an−1zn−1 + · · ·+ a1z + a0 = anzn + an−1zn−1 + · · ·+ a1z + a0

Now, by (b), we have aizi = aizi = aiz̄
i for all i. But ai ∈ R, so āi = ai and hence

we have shown that

anzn + an−1zn−1 + · · ·+ a1z + a0 = anz̄
n + an−1z̄

n−1 + · · ·+ a1z̄ + a0,

or in other words,
p(z) = p(z̄).

In particular, if p(r) = 0, then p(r̄) = p(r) = 0 = 0.
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4. Show that |Rn| = |R| for all n ∈ N.

Solution. We first show that |R2| = |R|. Since |R| = |[0, 1]| (Theorem 10.3.8), we
also have |R2| = |[0, 1] × [0, 1]|. Indeed, the equality |R| = |[0, 1]| implies that there
is a bijection f : R → [0, 1] and hence the function F : R2 → [0, 1] × [0, 1] given by
F (x, y) = (f(x), f(y)) is also a bijection. Now, we also showed that |[0, 1]× [0, 1]| = |R|
(Theorem 10.3.33) so we have |R2| = |[0, 1]× [0, 1]| = |R|. Hence, |R2| = |R| (the fact
that if |S| = |T | and |T | = |U | then |S| = |U | follows from the fact that if f : S → T
and g : T → U are bijections, then g ◦ f : S → U is a bijection since f−1 ◦ g−1 is an
inverse).

Now, we show by induction on n that |Rn| = |R| for all n ∈ N. The base case
n = 1 is trivial, since R1 = R. Suppose that |Rk| = |R| for some k ∈ N. We want
to show that |Rk+1| = |R|. Since |Rk| = |R| we have a bijection f : Rk → R. Then,
Rk+1 = Rk×R and we have a bijection g : Rk×R→ R×R given by g(x, y) = (f(x), y),
so |Rk×R| = |R×R|. Hence, |Rk+1| = |Rk×R| = |R×R| = |R2| = |R|. To show that
g is a bijection, we show that it is both surjective and injective. It is injective since if
g(x1, y1) = g(x2, y2) then (f(x1), y1) = (f(x2), y2) so f(x1) = f(x2) and y1 = y2. Since
f is injective, we have x1 = x2, so (x1, y1) = (x2, y2). Now, g is also surjective since if
(x, y) ∈ R× R then, since f is surjective, there exists x1 ∈ Rk such that f(x1) = x so
g(x1, y) = (f(x1), y) = (x, y).

5. Find the cardinality of each of those sets.

(a) The set of lines in the plane.

(b) The set of circles in the plane whose centre has rational coordinates and whose
radius is the square root of a prime number.

Solutions.

(a) We claim that the cardinality is c, the cardinality of R.

First, a vertical line is uniquely determined by its intersection with the x-axis, and
hence the set of vertical lines is in bijection with R. A line that is not vertical is of
the form y = ax+b for unique a, b ∈ R, and hence the set of non-vertical lines is in
bijection with R2. Hence, the set of all lines in the plane is in bijection with R∪R2.
Now, since |R| = |[0, 1]| (Theorem 10.3.8) we have a bijection f : R → [0, 1] and
since |R2| = |R| (Q5) and |R| = |(1, 2]| (Theorem 10.3.7 and Theorem 10.3.8)
we have another bijection g : R2 → (1, 2]. Hence, we can construct a function
h : R ∪ R2 → [0, 2] by defining h(x) = f(x) for x ∈ R and h(y, z) = g(y, z) for
(y, z) ∈ R2. Then, h is a bijection since it has an inverse k : [0, 2]→ R∪R2 defined
by k(x) = f−1(x) if x ∈ [0, 1] and k(x) = g−1(x) if x ∈ (1, 2], where f−1 and g−1

are the inverses of f and g respectively. Hence, |R ∪ R2| = |[0, 2]| = |[0, 1]| = |R|.
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(b) Let C be the set of those circles. We claim that the cardinality of C is ℵ0. Since
C is infinite and ℵ0 is the smallest infinite cardinality, we have ℵ0 ≤ |C|. Hence,
by the Cantor-Bernstein Theorem, it suffices to show that |C| ≤ ℵ0. In other
words, it suffices to show that C is countable.

A circle in C is uniquely specified by a pair of rational numbers x, y ∈ Q and
a prime number p, where (x, y) are the coordinates of the centre and

√
p is the

radius. Hence, C is in bijection with Q2×P, where Q2 = Q×Q = {(x, y) : x, y ∈
Q} and P ⊆ N is the set of prime numbers. We begin by proving the following
lemma.

Lemma. If S and T are countable sets, the so is S × T .

Proof. The set S × T is the union of the sets {s} × T for s ∈ S. Now, for all
s ∈ S, the set {s}×T is in bijection with T , which is countable, so {s}×T is also
countable. Since S is countable and the union of a countable number of countable
sets is countable (Theorem 10.2.10), we have that S × T is countable.

By this lemma, Q2 is countable. Also P is countable since P ⊆ N and a subset of
a countable set is countable. Hence, Q2×P by the lemma. So C is countable and
infinite, and hence |C| = ℵ0.

6. Show that a set S has infinitely many elements if and only if it has a subset S0 ⊆ S
such that S0 6= S and |S0| = |S|.

Solutions. Suppose that S has infinitely many elements. Since ℵ0 is the smallest
infinite cardinality, we have ℵ0 ≤ |S|, so there is an injection f : N→ S. Let si = f(i),
so that s1, s2, s3, . . . is an infinite sequence of distinct elements of S. Let S0 = S \{s1}.
Then, S0 6= S since s1 /∈ S0. We claim that |S0| = |S|. Define g : S → S0 by
g(si) = si+1 for all i ∈ N and g(x) = x if x 6= si for all i. Then, g is bijective since it
has an inverse h : S0 → S defined by h(si) = si−1 for all i ≥ 2 and h(x) = x if x 6= si
for all i. Indeed, if h(g(si)) = h(si+1) = si and if x 6= si then h(g(x)) = h(x) = x.
Similarly, g(h(x)) = x for all x ∈ S. Hence, g is a bijection between S and S0, so
|S| = |S0|.
Conversely, if S is finite and S0 ⊆ S is a subset such that S0 6= S, then |S| = n for
some n ∈ N and S0 has strictly less elements than S, so |S0| = k for some k < n and
hence |S0| < |S|.
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