Quiz 1 - Solutions
 Concepts in Abstract Mathematics
 MAT246 LEC0101 Winter 2020

Each tutorial had a different version of the quiz.
TUT0101 (Monday 13:00-14:00, TA: Hubert Dubé)
TUT0201 (Monday 16:00-17:00, TA: Debanjana Kundu)
TUT0301 (Tuesday 15:00-16:00, TA: Robin Gaudreau)
TUT0401 (Wednesday 13:00-14:00, TA: Robin Gaudreau)

TUT0101

Question 1 (5 points)

State the Fundamental Theorem of Arithmetic.
Solution. Every natural number greater than 1 can be written as a product of primes, and the expression of a number as a product of primes is unique except for the order of the factors.

Question 2 (10 points)

Show that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a c \equiv b d(\bmod m)$.
Solution. Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, there exist $k, l \in \mathbb{Z}$ such that $a-b=k m$ and $c-d=l m$. Hence, $a=b+k m$ and $c=d+l m$, so

$$
\begin{aligned}
a c & =(b+k m)(d+l m)=b d+b l m+k d m+k l m^{2} \\
& =b d+(b l+k d+k l m) m,
\end{aligned}
$$

which implies that

$$
a c-b d=(b l+k d+k l m) m .
$$

In particular, m divides $a c-b d$, which means that $a c \equiv b d(\bmod m)$.

Question 3 (10 points)

Prove, using induction, that for every natural number n,

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n \cdot(n+1)=\frac{n(n+1)(n+2)}{3}
$$

Solution. Let

$$
S=\left\{n \in \mathbb{N}: 1 \cdot 2+2 \cdot 3+\cdots+n \cdot(n+1)=\frac{n(n+1)(n+2)}{3}\right\}
$$

We want to show that $S=\mathbb{N}$ using the Principle of Mathematical Induction.
(A) We have $1 \in S$ since $1 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}=\frac{1 \cdot(1+1)(1+2)}{3}$, which is the desired formula with $n=1$.
(B) Suppose that $k \in S$. Then,

$$
1 \cdot 2+2 \cdot 3+\cdots+k \cdot(k+1)=\frac{k(k+1)(k+2)}{3}
$$

so adding $(k+1)(k+2)$ on both sides gives

$$
\begin{aligned}
1 \cdot 2+2 \cdot 3+\cdots+k \cdot(k+1)+(k+1)(k+2) & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3} \\
& =\frac{(k+1)(k+2)(k+3)}{3},
\end{aligned}
$$

and hence $k+1 \in S$.
By the Principle of Mathematical Induction $S=\mathbb{N}$, which proves that the formula holds for all $n \in \mathbb{N}$.

TUT0201

Question 1 (5 points)

(a) What does " a is congruent to b modulo m " means? In your answer, specify what a, b, and m are.
(b) What is the mathematical notation for this relationship?
(c) What is the modulus?

Solution.

(a) It means that m divides $a-b$. Here, $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}, m>1$.
(b) $a \equiv b(\bmod m)$
(c) The modulus is the number m.

Question 2 (10 points)

Use the Fundamental Theorem of Arithmetic to show that if p is a prime number and a and b are natural numbers such that p divides $a b$, then p divides at least one of a and b.

Solution. Since p divides $a b$, we have $a b=k p$ for some $k \in \mathbb{N}$. By the Fundamental Theorem of Arithmetic, we have $a=q_{1} q_{2} \cdots q_{m}, b=r_{1} r_{2} \cdots r_{n}$, and $k=s_{1} s_{2} \cdots s_{l}$, where q_{i}, r_{i}, s_{i} are primes (or possibly $k=1$). Thus,

$$
a b=q_{1} \cdots q_{m} r_{1} \cdots r_{n}=s_{1} \cdots s_{l} p
$$

which gives two expressions of the natural number $a b$ as a product of primes. By the Fundamental Theorem of Arithmetic, these two expressions are the same after reordering the factors. In particular, either $p=q_{i}$ for some i, or $p=r_{i}$ for some i. If $p=q_{i}$ then p divides a, and if $p=r_{i}$ then p divides b.

Question 3 (10 points)

Prove, using induction, that for every natural number n,

$$
2+2^{2}+2^{3}+\cdots+2^{n}=2^{n+1}-2 .
$$

Solution. Let

$$
S=\left\{n \in \mathbb{N}: 2+2^{2}+2^{3}+\cdots+2^{n}=2^{n+1}-2\right\}
$$

We want to show that $S=\mathbb{N}$ using the Principle of Mathematical Induction.
(A) We have $1 \in S$ since $2=4-2=2^{1+1}-2$, which is the desired formula with $n=1$.
(B) Suppose that $k \in S$. Then,

$$
2+2^{2}+2^{3}+\cdots+2^{k}=2^{k+1}-2
$$

so adding 2^{k+1} on both sides gives

$$
\begin{aligned}
2+2^{2}+2^{3}+\cdots+2^{k}+2^{k+1} & =2^{k+1}-2+2^{k+1} \\
& =2 \cdot 2^{k+1}-2 \\
& =2^{k+2}-2
\end{aligned}
$$

and hence $k+1 \in S$.
By the Principle of Mathematical Induction $S=\mathbb{N}$, which proves that the formula holds for all $n \in \mathbb{N}$.

TUT0301

Question 1 (5 points)

Define the canonical factorization into primes of a natural number N greater than 1.

Solution. Each natural number N greater than 1 has a unique representation of the form $N=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}$, where each p_{i} is a prime, p_{i} is less than p_{i+1} for each i, and each α_{i} is a natural number.

Question 2 (10 points)

Show that every natural number is congruent to the sum of its digits modulo 9.

Solution. Let $n \in \mathbb{N}$ and use the notation $n=\left(d_{k} d_{k-1} \cdots d_{1} d_{0}\right)_{10}$ to mean that the i th digit of n is d_{i}. Then,

$$
n=d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{1} \cdot 10+d_{0}
$$

Since $10 \equiv 1(\bmod 9)$, we have $10^{i} \equiv 1(\bmod 9)$ for all i. Hence, the above formula shows that

$$
\begin{aligned}
n & \equiv d_{k} \cdot 1+d_{k-1} \cdot 1+\cdots+d_{1} \cdot 1+d_{0} \quad(\bmod 9) \\
& \equiv d_{k}+d_{k-1}+\cdots+d_{1}+d_{0} \quad(\bmod 9)
\end{aligned}
$$

which means that n is congruent to the sum of its digits modulo 9 .

Question 3 (10 points)

Prove, using induction, that for every natural number n,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}
$$

Solution. Let

$$
S=\left\{n \in \mathbb{N}: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}\right\}
$$

We want to show that $S=\mathbb{N}$ using the Principle of Mathematical Induction.
(A) We have $1 \in S$ since $\frac{1}{1 \cdot 2}=\frac{1}{1+1}$, which is the desired formula with $n=1$.
(B) Suppose that $k \in S$. Then,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1},
$$

so adding $\frac{1}{(k+1)(k+2)}$ on both sides gives

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} & =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

and hence $k+1 \in S$.
By the Principle of Mathematical Induction $S=\mathbb{N}$, which proves that the formula holds for all $n \in \mathbb{N}$.

TUT0401

Question 1 (5 points)

State the Fundamental Theorem of Arithmetic.
Solution. Every natural number greater than 1 can be written as a product of primes, and the expression of a number as a product of primes is unique except for the order of the factors.

Question 2 (10 points)

Show that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a c \equiv b d(\bmod m)$.

Solution. Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, there exist $k, l \in \mathbb{Z}$ such that $a-b=k m$ and $c-d=l m$. Hence, $a=b+k m$ and $c=d+l m$, so

$$
\begin{aligned}
a c & =(b+k m)(d+l m)=b d+b l m+k d m+k l m^{2} \\
& =b d+(b l+k d+k l m) m,
\end{aligned}
$$

which implies that

$$
a c-b d=(b l+k d+k l m) m .
$$

In particular, m divides $a c-b d$, which means that $a c \equiv b d(\bmod m)$.

Question 3 (10 points)

Prove, using induction, that for every natural number n,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}
$$

Solution. Let

$$
S=\left\{n \in \mathbb{N}: \frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}\right\} .
$$

We want to show that $S=\mathbb{N}$ using the Principle of Mathematical Induction.
(A) We have $1 \in S$ since $\frac{1}{2}=2-\frac{3}{2}=2-\frac{1+2}{2^{1}}$, which is the desired formula with $n=1$.
(B) Suppose that $k \in S$. Then,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{k}{2^{k}}=2-\frac{k+2}{2^{k}}
$$

so adding $\frac{k+1}{2^{k+1}}$ on both sides gives

$$
\begin{aligned}
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{k}{2^{k}}+\frac{k+1}{2^{k+1}} & =2-\frac{k+2}{2^{k}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{2(k+2)-(k+1)}{2^{k+1}} \\
& =2-\frac{k+3}{2^{k+1}},
\end{aligned}
$$

and hence $k+1 \in S$.
By the Principle of Mathematical Induction $S=\mathbb{N}$, which proves that the formula holds for all $n \in \mathbb{N}$.

