Quiz 2 – Solutions Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Each tutorial had a different version of the quiz.

TUT0101 (Monday 13:00–14:00, TA: Hubert Dubé) TUT0201 (Monday 16:00–17:00, TA: Debanjana Kundu)

TUT0301 (Tuesday 15:00–16:00, TA: Robin Gaudreau)

TUT0401 (Wednesday 13:00–14:00, TA: Robin Gaudreau)

TUT0101

Question 1 (5 points)

State Fermat's Little Theorem.

Solution. If p is a prime number and a is any natural number that is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.

Question 2 (10 points)

Let p be prime and let $a, b \in \mathbb{N}$. Show, without using the Fundamental Theorem of Arithmetic, that if $p \mid ab$ then $p \mid a$ or $p \mid b$.

Solution. If $p \mid a$, then we are done. Hence, suppose that p does not divide a. We want to show that $p \mid b$. Since p is prime and does not divide a, they are relatively prime. Then, by the Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ such that ax + py = 1. Multiplying both sides by b yields abx + pby = b. Since $p \mid ab$, we have $p \mid abx$. So, p divides both abx and pby, and hence it divides their sum, which is b.

Question 3 (10 points)

Let a = 46 and b = 39. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

```
46 = 39 \cdot 1 + 7

39 = 7 \cdot 5 + 4

7 = 4 \cdot 1 + 3

4 = 3 \cdot 1 + 1

3 = 1 \cdot 3 + 0,
```

so gcd(46, 39) = 1. Working backwards, we find

$$1 = 4 - 3 \cdot 1$$

= 4 - (7 - 4 \cdot 1) \cdot 1
= (39 - 7 \cdot 5) \cdot 2 - 7 \cdot 1
= 39 \cdot 2 - 7 \cdot 11
= 39 \cdot 2 - (46 - 39 \cdot 1) \cdot 11
= 39 \cdot 13 - 46 \cdot 11.

TUT0201

Question 1 (5 points)

State Fermat's Little Theorem.

Solution. If p is a prime number and a is any natural number that is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.

Question 2 (10 points)

Let $a, b, c \in \mathbb{N}$ and let $d = \operatorname{gcd}(a, b)$. Show that the linear Diophantine equation ax + by = c has a solution if and only if $d \mid c$.

Solution. Suppose that there is a solution, i.e. ax + by = c for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ we have $d \mid ax$ and $d \mid by$, so $d \mid ax + by$ and hence $d \mid c$.

Conversely, suppose that $d \mid c$ and write c = dk for some $k \in \mathbb{Z}$. By the Euclidean Algorithm, there exist $s, t \in \mathbb{Z}$ such that as + bt = d. Then, multiplying both sides by k, we get ask + btk = dk = c, so by letting x = skand y = tk we have ax + by = c and hence (x, y) is a solution.

Question 3 (10 points)

Let a = 48 and b = 43. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$48 = 43 \cdot 1 + 5$$

$$43 = 5 \cdot 8 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

so gcd(48, 43) = 1. Working backwards, we find

$$1 = 3 - 2 \cdot 1$$

= 3 - (5 - 3 \cdot 1) \cdot 1
= 3 \cdot 2 - 5 \cdot 1
= (43 - 5 \cdot 8) \cdot 2 - 5 \cdot 1
= 43 \cdot 2 - 5 \cdot 17
= 43 \cdot 2 - (48 - 43 \cdot 1) \cdot 17
= 43 \cdot 19 - 48 \cdot 17.

TUT0301

Question 1 (5 points)

State Wilson's Theorem.

Solution. If p is a prime number, then $(p-1)! + 1 \equiv 0 \pmod{p}$.

Question 2 (10 points)

Let p be prime and let $a, b \in \mathbb{N}$. Show, without using the Fundamental Theorem of Arithmetic, that if $p \mid ab$ then $p \mid a$ or $p \mid b$.

Solution. If $p \mid a$, then we are done. Hence, suppose that p does not divide a. We want to show that $p \mid b$. Since p is prime and does not divide a, they are relatively prime. Then, by the Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ such that ax + py = 1. Multiplying both sides by b yields abx + pby = b. Since $p \mid ab$, we have $p \mid abx$. So, p divides both abx and pby, and hence it divides their sum, which is b.

Question 3 (10 points)

Let a = 49 and b = 26. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$49 = 26 \cdot 1 + 23$$

$$26 = 23 \cdot 1 + 3$$

$$23 = 3 \cdot 7 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

so gcd(49, 26) = 1. Working backwards, we find

$$1 = 3 - 2 \cdot 1$$

= 3 - (23 - 3 \cdot 7) \cdot 1
= 3 \cdot 8 - 23 \cdot 1
= (26 - 23 \cdot 1) \cdot 8 - 23 \cdot 1
= 26 \cdot 8 - 23 \cdot 9
= 26 \cdot 8 - (49 - 26 \cdot 1) \cdot 9
= 26 \cdot 17 - 49 \cdot 9.

TUT0401

Question 1 (5 points)

State Wilson's Theorem.

Solution. If p is a prime number, then $(p-1)! + 1 \equiv 0 \pmod{p}$.

Question 2 (10 points)

Let $a, b, c \in \mathbb{N}$ and let $d = \operatorname{gcd}(a, b)$. Show that the linear Diophantine equation ax + by = c has a solution if and only if $d \mid c$.

Solution. Suppose that there is a solution, i.e. ax + by = c for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ we have $d \mid ax$ and $d \mid by$, so $d \mid ax + by$ and hence $d \mid c$.

Conversely, suppose that $d \mid c$ and write c = dk for some $k \in \mathbb{Z}$. By the Euclidean Algorithm, there exist $s, t \in \mathbb{Z}$ such that as + bt = d. Then, multiplying both sides by k, we get ask + btk = dk = c, so by letting x = skand y = tk we have ax + by = c and hence (x, y) is a solution.

Question 3 (10 points)

Let a = 43 and b = 35. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$43 = 35 \cdot 1 + 8$$

$$35 = 8 \cdot 4 + 3$$

$$8 = 3 \cdot 2 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

so gcd(43, 35) = 1. Working backwards, we find

$$1 = 3 - 2 \cdot 1$$

= 3 - (8 - 3 \cdot 2) \cdot 1
= 3 \cdot 3 - 8 \cdot 1
= (35 - 8 \cdot 4) \cdot 3 - 8 \cdot 1
= 35 \cdot 3 - 8 \cdot 13
= 35 \cdot 3 - (43 - 35 \cdot 1) \cdot 13
= 35 \cdot 16 - 43 \cdot 13.