Quiz 2 - Solutions Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Each tutorial had a different version of the quiz.
TUT0101 (Monday 13:00-14:00, TA: Hubert Dubé)
TUT0201 (Monday 16:00-17:00, TA: Debanjana Kundu)
TUT0301 (Tuesday 15:00-16:00, TA: Robin Gaudreau)
TUT0401 (Wednesday 13:00-14:00, TA: Robin Gaudreau)

TUT0101

Question 1 (5 points)

State Fermat's Little Theorem.
Solution. If p is a prime number and a is any natural number that is not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$.

Question 2 (10 points)

Let p be prime and let $a, b \in \mathbb{N}$. Show, without using the Fundamental Theorem of Arithmetic, that if $p \mid a b$ then $p \mid a$ or $p \mid b$.

Solution. If $p \mid a$, then we are done. Hence, suppose that p does not divide a. We want to show that $p \mid b$. Since p is prime and does not divide a, they are relatively prime. Then, by the Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ such that $a x+p y=1$. Multiplying both sides by b yields $a b x+p b y=b$. Since $p \mid a b$, we have $p \mid a b x$. So, p divides both $a b x$ and $p b y$, and hence it divides their sum, which is b.

Question 3 (10 points)

Let $a=46$ and $b=39$. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$
\begin{aligned}
46 & =39 \cdot 1+7 \\
39 & =7 \cdot 5+4 \\
7 & =4 \cdot 1+3 \\
4 & =3 \cdot 1+1 \\
3 & =1 \cdot 3+0,
\end{aligned}
$$

so $\operatorname{gcd}(46,39)=1$. Working backwards, we find

$$
\begin{aligned}
1 & =4-3 \cdot 1 \\
& =4-(7-4 \cdot 1) \cdot 1 \\
& =4 \cdot 2-7 \cdot 1 \\
& =(39-7 \cdot 5) \cdot 2-7 \cdot 1 \\
& =39 \cdot 2-7 \cdot 11 \\
& =39 \cdot 2-(46-39 \cdot 1) \cdot 11 \\
& =39 \cdot 13-46 \cdot 11
\end{aligned}
$$

TUT0201

Question 1 (5 points)

State Fermat's Little Theorem.
Solution. If p is a prime number and a is any natural number that is not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$.

Question 2 (10 points)

Let $a, b, c \in \mathbb{N}$ and let $d=\operatorname{gcd}(a, b)$. Show that the linear Diophantine equation $a x+b y=c$ has a solution if and only if $d \mid c$.

Solution. Suppose that there is a solution, i.e. $a x+b y=c$ for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ we have $d \mid a x$ and $d \mid b y$, so $d \mid a x+b y$ and hence $d \mid c$.

Conversely, suppose that $d \mid c$ and write $c=d k$ for some $k \in \mathbb{Z}$. By the Euclidean Algorithm, there exist $s, t \in \mathbb{Z}$ such that $a s+b t=d$. Then, multiplying both sides by k, we get $a s k+b t k=d k=c$, so by letting $x=s k$ and $y=t k$ we have $a x+b y=c$ and hence (x, y) is a solution.

Question 3 (10 points)

Let $a=48$ and $b=43$. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$
\begin{aligned}
48 & =43 \cdot 1+5 \\
43 & =5 \cdot 8+3 \\
5 & =3 \cdot 1+2 \\
3 & =2 \cdot 1+1 \\
2 & =1 \cdot 2+0
\end{aligned}
$$

so $\operatorname{gcd}(48,43)=1$. Working backwards, we find

$$
\begin{aligned}
1 & =3-2 \cdot 1 \\
& =3-(5-3 \cdot 1) \cdot 1 \\
& =3 \cdot 2-5 \cdot 1 \\
& =(43-5 \cdot 8) \cdot 2-5 \cdot 1 \\
& =43 \cdot 2-5 \cdot 17 \\
& =43 \cdot 2-(48-43 \cdot 1) \cdot 17 \\
& =43 \cdot 19-48 \cdot 17
\end{aligned}
$$

TUT0301

Question 1 (5 points)

State Wilson's Theorem.
Solution. If p is a prime number, then $(p-1)!+1 \equiv 0(\bmod p)$.

Question 2 (10 points)

Let p be prime and let $a, b \in \mathbb{N}$. Show, without using the Fundamental Theorem of Arithmetic, that if $p \mid a b$ then $p \mid a$ or $p \mid b$.

Solution. If $p \mid a$, then we are done. Hence, suppose that p does not divide a. We want to show that $p \mid b$. Since p is prime and does not divide a, they are relatively prime. Then, by the Euclidean Algorithm, there exist $x, y \in \mathbb{Z}$ such that $a x+p y=1$. Multiplying both sides by b yields $a b x+p b y=b$. Since $p \mid a b$, we have $p \mid a b x$. So, p divides both $a b x$ and $p b y$, and hence it divides their sum, which is b.

Question 3 (10 points)

Let $a=49$ and $b=26$. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$
\begin{aligned}
49 & =26 \cdot 1+23 \\
26 & =23 \cdot 1+3 \\
23 & =3 \cdot 7+2 \\
3 & =2 \cdot 1+1 \\
2 & =1 \cdot 2+0
\end{aligned}
$$

so $\operatorname{gcd}(49,26)=1$. Working backwards, we find

$$
\begin{aligned}
1 & =3-2 \cdot 1 \\
& =3-(23-3 \cdot 7) \cdot 1 \\
& =3 \cdot 8-23 \cdot 1 \\
& =(26-23 \cdot 1) \cdot 8-23 \cdot 1 \\
& =26 \cdot 8-23 \cdot 9 \\
& =26 \cdot 8-(49-26 \cdot 1) \cdot 9 \\
& =26 \cdot 17-49 \cdot 9 .
\end{aligned}
$$

TUT0401

Question 1 (5 points)

State Wilson's Theorem.
Solution. If p is a prime number, then $(p-1)!+1 \equiv 0(\bmod p)$.

Question 2 (10 points)

Let $a, b, c \in \mathbb{N}$ and let $d=\operatorname{gcd}(a, b)$. Show that the linear Diophantine equation $a x+b y=c$ has a solution if and only if $d \mid c$.

Solution. Suppose that there is a solution, i.e. $a x+b y=c$ for some $x, y \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$ we have $d \mid a x$ and $d \mid b y$, so $d \mid a x+b y$ and hence $d \mid c$.

Conversely, suppose that $d \mid c$ and write $c=d k$ for some $k \in \mathbb{Z}$. By the Euclidean Algorithm, there exist $s, t \in \mathbb{Z}$ such that $a s+b t=d$. Then, multiplying both sides by k, we get $a s k+b t k=d k=c$, so by letting $x=s k$ and $y=t k$ we have $a x+b y=c$ and hence (x, y) is a solution.

Question 3 (10 points)

Let $a=43$ and $b=35$. Use the Euclidean Algorithm to find the greatest common divisor of a and b, and express the result as a linear combination of a and b.

Solution. We have

$$
\begin{aligned}
43 & =35 \cdot 1+8 \\
35 & =8 \cdot 4+3 \\
8 & =3 \cdot 2+2 \\
3 & =2 \cdot 1+1 \\
2 & =1 \cdot 2+0
\end{aligned}
$$

so $\operatorname{gcd}(43,35)=1$. Working backwards, we find

$$
\begin{aligned}
1 & =3-2 \cdot 1 \\
& =3-(8-3 \cdot 2) \cdot 1 \\
& =3 \cdot 3-8 \cdot 1 \\
& =(35-8 \cdot 4) \cdot 3-8 \cdot 1 \\
& =35 \cdot 3-8 \cdot 13 \\
& =35 \cdot 3-(43-35 \cdot 1) \cdot 13 \\
& =35 \cdot 16-43 \cdot 13
\end{aligned}
$$

