Quiz 3 - Solutions
 Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Each tutorial had a different version of the quiz.
TUT0101 (Monday 13:00-14:00, TA: Hubert Dubé)
TUT0201 (Monday 16:00-17:00, TA: Debanjana Kundu)
TUT0301 (Tuesday 15:00-16:00, TA: Robin Gaudreau)
TUT0401 (Wednesday 13:00-14:00, TA: Robin Gaudreau)

TUT0101

Question 1 (5 points)

State De Moivre's Theorem.
Solution. For every $r \geq 0, \theta \in \mathbb{R}$, and $n \in \mathbb{N}$, we have

$$
(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Question 2 (10 points)

Show that every non-zero complex number has a complex square root.
Solution. Let $z \in \mathbb{C}$ be non-zero. Then, z has a polar form $z=r(\cos \theta+$ $i \sin \theta)$ where $r>0$ and $\theta \in \mathbb{R}$. We claim that $w=\sqrt{r}(\cos (\theta / 2)+i \sin (\theta / 2))$ is a complex square root of z. Indeed, by De Moivre's Theorem, we have

$$
w^{2}=(\sqrt{r})^{2}(\cos (2 \theta / 2)+i \sin (2 \theta / 2))=r(\cos \theta+i \sin \theta)=z .
$$

Question 3 (10 points)

Write $\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}$ in $a+b i$ form, where a and b are real numbers. Simplify a and b as much as possible; the final answer should not involve cos or sin.

Solution. We have $\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\cos (\pi / 4)+i \sin (\pi / 4)$, so by De Moivre's Theorem,

$$
\begin{aligned}
\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10} & =(\cos (\pi / 4)+i \sin (\pi / 4))^{10} \\
& =\cos (10 \pi / 4)+i \sin (10 \pi / 4) \\
& =\cos (2 \pi / 4)+i \sin (2 \pi / 4) \\
& =\cos (\pi / 2)+i \sin (\pi / 2) \\
& =i
\end{aligned}
$$

TUT0201

Question 1 (5 points)

State the Fundamental Theorem of Algebra.
Solution. Every non-constant polynomial with complex coefficients has a complex root.

Question 2 (10 points)

Show that any non-zero complex number has a multiplicative inverse.
Solution. Let $z=a+b i \in \mathbb{C}$ be non-zero, where $a, b \in \mathbb{R}$. Then, $a^{2}+b^{2} \neq 0$ so $w=\frac{a-b i}{a^{2}+b^{2}}$ is a multiplicative inverse of z since

$$
z w=\frac{(a+b i)(a-b i)}{a^{2}+b^{2}}=\frac{\left(a^{2}+b^{2}\right)+(a b-a b) i}{a^{2}+b^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1
$$

Question 3 (10 points)

Write $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{11}$ in $a+b i$ form, where a and b are real numbers. Simplify a and b as much as possible; the final answer should not involve cos or sin.

Solution. We have $\frac{\sqrt{3}}{2}+\frac{i}{2}=\cos (\pi / 6)+i \sin (\pi / 6)$ so by De Moivre's Theorem,

$$
\begin{aligned}
\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{11} & =(\cos (\pi / 6)+i \sin (\pi / 6))^{11} \\
& =\cos (11 \pi / 6)+i \sin (11 \pi / 6) \\
& =\frac{\sqrt{3}}{2}-\frac{i}{2}
\end{aligned}
$$

TUT0301

Question 1 (5 points)

State the Factor Theorem.
Solution. The complex number r is a root of a polynomial $p(z)$ if and only if $z-r$ is a factor of $p(z)$.

Question 2 (10 points)

Show that every non-zero complex number has a complex square root.
Solution. Let $z \in \mathbb{C}$ be non-zero. Then, z has a polar form $z=r(\cos \theta+$ $i \sin \theta$) where $r>0$ and $\theta \in \mathbb{R}$. We claim that $w=\sqrt{r}(\cos (\theta / 2)+i \sin (\theta / 2))$ is a complex square root of z. Indeed, by De Moivre's Theorem, we have

$$
w^{2}=(\sqrt{r})^{2}(\cos (2 \theta / 2)+i \sin (2 \theta / 2))=r(\cos \theta+i \sin \theta)=z
$$

Question 3 (10 points)

Write $\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}$ in $a+b i$ form, where a and b are real numbers. Simplify a and b as much as possible; the final answer should not involve cos or sin.

Solution. We have $\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\cos (\pi / 4)+i \sin (\pi / 4)$, so by De Moivre's Theorem,

$$
\begin{aligned}
\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10} & =(\cos (\pi / 4)+i \sin (\pi / 4))^{10} \\
& =\cos (10 \pi / 4)+i \sin (10 \pi / 4) \\
& =\cos (2 \pi / 4)+i \sin (2 \pi / 4) \\
& =\cos (\pi / 2)+i \sin (\pi / 2) \\
& =i
\end{aligned}
$$

TUT0401

Question 1 (5 points)

State De Moivre's Theorem.
Solution. For every $r \geq 0, \theta \in \mathbb{R}$, and $n \in \mathbb{N}$, we have

$$
(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Question 2 (10 points)

Show that any non-zero complex number has a multiplicative inverse.
Solution. Let $z=a+b i \in \mathbb{C}$ be non-zero, where $a, b \in \mathbb{R}$. Then, $a^{2}+b^{2} \neq 0$ so $w=\frac{a-b i}{a^{2}+b^{2}}$ is a multiplicative inverse of z since

$$
z w=\frac{(a+b i)(a-b i)}{a^{2}+b^{2}}=\frac{\left(a^{2}+b^{2}\right)+(a b-a b) i}{a^{2}+b^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1 .
$$

Question 3 (10 points)

Write $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{11}$ in $a+b i$ form, where a and b are real numbers. Simplify a and b as much as possible; the final answer should not involve cos or sin.

Solution. We have $\frac{\sqrt{3}}{2}+\frac{i}{2}=\cos (\pi / 6)+i \sin (\pi / 6)$ so by De Moivre's Theorem,

$$
\begin{aligned}
\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{11} & =(\cos (\pi / 6)+i \sin (\pi / 6))^{11} \\
& =\cos (11 \pi / 6)+i \sin (11 \pi / 6) \\
& =\frac{\sqrt{3}}{2}-\frac{i}{2}
\end{aligned}
$$

